/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include
#endif
extern const AP_HAL::HAL& hal;
#ifdef CONFIG_ARCH_BOARD_PX4FMU_V4
#define BOARD_RSSI_DEFAULT 1
#define BOARD_RSSI_ANA_PIN 11
#define BOARD_RSSI_ANA_PIN_HIGH 3.3f
#else
#define BOARD_RSSI_DEFAULT 0
#define BOARD_RSSI_ANA_PIN 0
#define BOARD_RSSI_ANA_PIN_HIGH 5.0f
#endif
AP_RSSI::PWMState AP_RSSI::pwm_state;
const AP_Param::GroupInfo AP_RSSI::var_info[] = {
// @Param: TYPE
// @DisplayName: RSSI Type
// @Description: Radio Receiver RSSI type. If your radio receiver supports RSSI of some kind, set it here, then set its associated RSSI_XXXXX parameters, if any.
// @Values: 0:Disabled,1:AnalogPin,2:RCChannelPwmValue,3:ReceiverProtocol,4:PWMInputPin
// @User: Standard
AP_GROUPINFO_FLAGS("TYPE", 0, AP_RSSI, rssi_type, BOARD_RSSI_DEFAULT, AP_PARAM_FLAG_ENABLE),
// @Param: ANA_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: Pin used to read the RSSI voltage or PWM value
// @Values: 0:APM2 A0,1:APM2 A1,13:APM2 A13,11:Pixracer,13:Pixhawk ADC4,14:Pixhawk ADC3,15:Pixhawk ADC6,15:Pixhawk2 ADC,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6,103:Pixhawk SBUS
// @User: Standard
AP_GROUPINFO("ANA_PIN", 1, AP_RSSI, rssi_analog_pin, BOARD_RSSI_ANA_PIN),
// @Param: PIN_LOW
// @DisplayName: RSSI pin's lowest voltage
// @Description: RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers put out inverted values so this value may be higher than RSSI_PIN_HIGH
// @Units: V
// @Increment: 0.01
// @Range: 0 5.0
// @User: Standard
AP_GROUPINFO("PIN_LOW", 2, AP_RSSI, rssi_analog_pin_range_low, 0.0f),
// @Param: PIN_HIGH
// @DisplayName: RSSI pin's highest voltage
// @Description: RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers put out inverted values so this value may be lower than RSSI_PIN_LOW
// @Units: V
// @Increment: 0.01
// @Range: 0 5.0
// @User: Standard
AP_GROUPINFO("PIN_HIGH", 3, AP_RSSI, rssi_analog_pin_range_high, BOARD_RSSI_ANA_PIN_HIGH),
// @Param: CHANNEL
// @DisplayName: Receiver RSSI channel number
// @Description: The channel number where RSSI will be output by the radio receiver (5 and above).
// @Range: 0 16
// @User: Standard
AP_GROUPINFO("CHANNEL", 4, AP_RSSI, rssi_channel, 0),
// @Param: CHAN_LOW
// @DisplayName: RSSI PWM low value
// @Description: PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers output inverted values so this value may be lower than RSSI_CHAN_HIGH
// @Units: PWM
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("CHAN_LOW", 5, AP_RSSI, rssi_channel_low_pwm_value, 1000),
// @Param: CHAN_HIGH
// @DisplayName: Receiver RSSI PWM high value
// @Description: PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers output inverted values so this value may be higher than RSSI_CHAN_LOW
// @Units: PWM
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("CHAN_HIGH", 6, AP_RSSI, rssi_channel_high_pwm_value, 2000),
AP_GROUPEND
};
// Public
// ------
// constructor
AP_RSSI::AP_RSSI()
{
AP_Param::setup_object_defaults(this, var_info);
if (_s_instance) {
AP_HAL::panic("Too many RSSI sensors");
}
_s_instance = this;
}
// destructor
AP_RSSI::~AP_RSSI(void)
{
}
/*
* Get the AP_RSSI singleton
*/
AP_RSSI *AP_RSSI::get_instance()
{
return _s_instance;
}
// Initialize the rssi object and prepare it for use
void AP_RSSI::init()
{
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE);
}
// Read the receiver RSSI value as a float 0.0f - 1.0f.
// 0.0 represents weakest signal, 1.0 represents maximum signal.
float AP_RSSI::read_receiver_rssi()
{
// Default to 0 RSSI
float receiver_rssi = 0.0f;
switch (rssi_type) {
case RssiType::RSSI_DISABLED:
receiver_rssi = 0.0f;
break;
case RssiType::RSSI_ANALOG_PIN:
receiver_rssi = read_pin_rssi();
break;
case RssiType::RSSI_RC_CHANNEL_VALUE:
receiver_rssi = read_channel_rssi();
break;
case RssiType::RSSI_RECEIVER: {
int16_t rssi = RC_Channels::get_receiver_rssi();
if (rssi != -1) {
receiver_rssi = rssi / 255.0;
}
break;
}
case RssiType::RSSI_PWM_PIN:
receiver_rssi = read_pwm_pin_rssi();
break;
default :
receiver_rssi = 0.0f;
break;
}
return receiver_rssi;
}
// Read the receiver RSSI value as an 8-bit integer
// 0 represents weakest signal, 255 represents maximum signal.
uint8_t AP_RSSI::read_receiver_rssi_uint8()
{
return read_receiver_rssi() * 255;
}
// Private
// -------
// read the RSSI value from an analog pin - returns float in range 0.0 to 1.0
float AP_RSSI::read_pin_rssi()
{
rssi_analog_source->set_pin(rssi_analog_pin);
float current_analog_voltage = rssi_analog_source->voltage_average();
return scale_and_constrain_float_rssi(current_analog_voltage, rssi_analog_pin_range_low, rssi_analog_pin_range_high);
}
// read the RSSI value from a PWM value on a RC channel
float AP_RSSI::read_channel_rssi()
{
uint16_t rssi_channel_value = RC_Channels::get_radio_in(rssi_channel-1);
float channel_rssi = scale_and_constrain_float_rssi(rssi_channel_value, rssi_channel_low_pwm_value, rssi_channel_high_pwm_value);
return channel_rssi;
}
// read the PWM value from a pin
float AP_RSSI::read_pwm_pin_rssi()
{
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN || CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// check if pin has changed and initialise gpio event callback
pwm_state.gpio = get_gpio(rssi_analog_pin);
if (pwm_state.gpio != pwm_state.last_gpio) {
// remove old gpio event callback if present
if (pwm_state.last_gpio != 0) {
stm32_gpiosetevent(pwm_state.last_gpio, false, false, false, nullptr);
pwm_state.last_gpio = 0;
}
// install interrupt handler on rising or falling edge of gpio
if (pwm_state.gpio != 0) {
stm32_gpiosetevent(pwm_state.gpio, true, true, false, irq_handler);
pwm_state.last_gpio = pwm_state.gpio;
}
}
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
if (pwm_state.gpio != rssi_analog_pin) {
pwm_state.gpio = rssi_analog_pin;
// remove old gpio event callback if present
if (pwm_state.last_gpio != 0) {
hal.gpio->attach_interrupt(pwm_state.gpio,
nullptr,
HAL_GPIO_INTERRUPT_BOTH);
pwm_state.last_gpio = 0;
}
// install interrupt handler on rising or falling edge of gpio
if (pwm_state.gpio != 0) {
hal.gpio->pinMode(pwm_state.gpio, HAL_GPIO_INPUT);
hal.gpio->attach_interrupt(pwm_state.gpio,
irq_handler_chibios,
HAL_GPIO_INTERRUPT_BOTH);
pwm_state.gpio = pwm_state.gpio;
}
}
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// disable interrupts temporarily
irqstate_t istate = irqsave();
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
void *istate = hal.scheduler->disable_interrupts_save();
#endif
// check for timeout
float ret;
if ((pwm_state.last_reading_ms == 0) || (AP_HAL::millis() - pwm_state.last_reading_ms > 1000)) {
pwm_state.value = 0;
ret = 0;
} else {
// convert pwm value to rssi value
ret = scale_and_constrain_float_rssi(pwm_state.value, rssi_channel_low_pwm_value, rssi_channel_high_pwm_value);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// restore interrupts
irqrestore(istate);
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
hal.scheduler->restore_interrupts(istate);
#endif
return ret;
#else
return 0.0f;
#endif
}
// Scale and constrain a float rssi value to 0.0 to 1.0 range
float AP_RSSI::scale_and_constrain_float_rssi(float current_rssi_value, float low_rssi_range, float high_rssi_range)
{
float rssi_value_range = fabsf(high_rssi_range - low_rssi_range);
if (is_zero(rssi_value_range)) {
// User range isn't meaningful, return 0 for RSSI (and avoid divide by zero)
return 0.0f;
}
// Note that user-supplied ranges may be inverted and we accommodate that here.
// (Some radio receivers put out inverted ranges for RSSI-type values).
bool range_is_inverted = (high_rssi_range < low_rssi_range);
// Constrain to the possible range - values outside are clipped to ends
current_rssi_value = constrain_float(current_rssi_value,
range_is_inverted ? high_rssi_range : low_rssi_range,
range_is_inverted ? low_rssi_range : high_rssi_range);
if (range_is_inverted)
{
// Swap values so we can treat them as low->high uniformly in the code that follows
current_rssi_value = high_rssi_range + fabsf(current_rssi_value - low_rssi_range);
std::swap(low_rssi_range, high_rssi_range);
}
// Scale the value down to a 0.0 - 1.0 range
float rssi_value_scaled = (current_rssi_value - low_rssi_range) / rssi_value_range;
// Make absolutely sure the value is clipped to the 0.0 - 1.0 range. This should handle things if the
// value retrieved falls outside the user-supplied range.
return constrain_float(rssi_value_scaled, 0.0f, 1.0f);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// get gpio id from pin number
uint32_t AP_RSSI::get_gpio(uint8_t pin_number) const
{
#ifdef GPIO_GPIO0_INPUT
switch (pin_number) {
case 50:
return GPIO_GPIO0_INPUT;
case 51:
return GPIO_GPIO1_INPUT;
case 52:
return GPIO_GPIO2_INPUT;
case 53:
return GPIO_GPIO3_INPUT;
case 54:
return GPIO_GPIO4_INPUT;
case 55:
return GPIO_GPIO5_INPUT;
}
#endif
return 0;
}
// interrupt handler for reading pwm value
int AP_RSSI::irq_handler(int irq, void *context)
{
// sanity check
if (pwm_state.gpio == 0) {
return 0;
}
// read value of pin
bool pin_high = stm32_gpioread(pwm_state.gpio);
irq_handler_calc_pwm(pin_high);
return 0;
}
#endif
void AP_RSSI::irq_handler_calc_pwm(bool pin_high)
{
// capture time
const uint64_t now = AP_HAL::micros64();
// calculate pwm value
if (pin_high) {
pwm_state.pulse_start_us = now;
} else {
if (pwm_state.pulse_start_us != 0) {
pwm_state.value = now - pwm_state.pulse_start_us;
}
pwm_state.pulse_start_us = 0;
pwm_state.last_reading_ms = AP_HAL::millis();
}
}
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
// interrupt handler for reading pwm value
void AP_RSSI::irq_handler_chibios()
{
// read value of pin
bool pin_high = hal.gpio->read(pwm_state.gpio);
irq_handler_calc_pwm(pin_high);
}
#endif
AP_RSSI *AP_RSSI::_s_instance = nullptr;
namespace AP {
AP_RSSI *rssi()
{
return AP_RSSI::get_instance();
}
};