// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- static byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling static void init_rc_in() { // set rc channel ranges g.rc_1.set_angle(4500); g.rc_2.set_angle(4500); g.rc_3.set_range(0,1000); g.rc_3.scale_output = .9; g.rc_4.set_angle(4500); // reverse: CW = left // normal: CW = left??? g.rc_1.set_type(RC_CHANNEL_ANGLE_RAW); g.rc_2.set_type(RC_CHANNEL_ANGLE_RAW); g.rc_4.set_type(RC_CHANNEL_ANGLE_RAW); // set rc dead zones /*g.rc_1.dead_zone = 60; g.rc_2.dead_zone = 60; g.rc_3.dead_zone = 60; g.rc_4.dead_zone = 300; */ g.rc_1.set_dead_zone(60); g.rc_2.set_dead_zone(60); g.rc_3.set_dead_zone(60); g.rc_4.set_dead_zone(300); //set auxiliary ranges g.rc_5.set_range(0,1000); g.rc_5.set_filter(false); g.rc_6.set_range(0,1000); g.rc_7.set_range(0,1000); g.rc_8.set_range(0,1000); } static void init_rc_out() { #if ARM_AT_STARTUP == 1 motor_armed = 1; #endif APM_RC.Init(); // APM Radio initialization // fix for crazy output OCR1B = 0xFFFF; // PB6, OUT3 OCR1C = 0xFFFF; // PB7, OUT4 OCR5B = 0xFFFF; // PL4, OUT1 OCR5C = 0xFFFF; // PL5, OUT2 OCR4B = 0xFFFF; // PH4, OUT6 OCR4C = 0xFFFF; // PH5, OUT5 // this is the camera pitch5 and roll6 APM_RC.OutputCh(CH_5, 1500); APM_RC.OutputCh(CH_6, 1500); // don't fuss if we are calibrating if(g.esc_calibrate == 1) return; if(g.rc_3.radio_min <= 1200){ output_min(); } for(byte i = 0; i < 5; i++){ delay(20); read_radio(); } // sanity check if(g.rc_3.radio_min >= 1300){ g.rc_3.radio_min = g.rc_3.radio_in; output_min(); } } void output_min() { #if FRAME_CONFIG == HELI_FRAME heli_move_servos_to_mid(); #else APM_RC.OutputCh(CH_1, g.rc_3.radio_min); // Initialization of servo outputs APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); #endif APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); #if FRAME_CONFIG == OCTA_FRAME APM_RC.OutputCh(CH_10, g.rc_3.radio_min); APM_RC.OutputCh(CH_11, g.rc_3.radio_min); #endif } static void read_radio() { if (APM_RC.GetState() == 1){ new_radio_frame = true; g.rc_1.set_pwm(APM_RC.InputCh(CH_1)); g.rc_2.set_pwm(APM_RC.InputCh(CH_2)); g.rc_3.set_pwm(APM_RC.InputCh(CH_3)); g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); g.rc_5.set_pwm(APM_RC.InputCh(CH_5)); g.rc_6.set_pwm(APM_RC.InputCh(CH_6)); g.rc_7.set_pwm(APM_RC.InputCh(CH_7)); g.rc_8.set_pwm(APM_RC.InputCh(CH_8)); #if FRAME_CONFIG != HELI_FRAME // limit our input to 800 so we can still pitch and roll g.rc_3.control_in = min(g.rc_3.control_in, 800); #endif //throttle_failsafe(g.rc_3.radio_in); } } static void throttle_failsafe(uint16_t pwm) { if(g.throttle_fs_enabled == 0) return; //check for failsafe and debounce funky reads // ------------------------------------------ if (pwm < (unsigned)g.throttle_fs_value){ // we detect a failsafe from radio // throttle has dropped below the mark failsafeCounter++; if (failsafeCounter == 9){ SendDebug("MSG FS ON "); SendDebugln(pwm, DEC); }else if(failsafeCounter == 10) { ch3_failsafe = true; //set_failsafe(true); //failsafeCounter = 10; }else if (failsafeCounter > 10){ failsafeCounter = 11; } }else if(failsafeCounter > 0){ // we are no longer in failsafe condition // but we need to recover quickly failsafeCounter--; if (failsafeCounter > 3){ failsafeCounter = 3; } if (failsafeCounter == 1){ SendDebug("MSG FS OFF "); SendDebugln(pwm, DEC); }else if(failsafeCounter == 0) { ch3_failsafe = false; //set_failsafe(false); //failsafeCounter = -1; }else if (failsafeCounter <0){ failsafeCounter = -1; } } } static void trim_radio() { for (byte i = 0; i < 30; i++){ read_radio(); } g.rc_1.trim(); // roll g.rc_2.trim(); // pitch g.rc_4.trim(); // yaw g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_4.save_eeprom(); } static void trim_yaw() { for (byte i = 0; i < 30; i++){ read_radio(); } g.rc_4.trim(); // yaw }