#include "AP_Camera_Backend.h" #if AP_CAMERA_ENABLED #include #include #include extern const AP_HAL::HAL& hal; // Constructor AP_Camera_Backend::AP_Camera_Backend(AP_Camera &frontend, AP_Camera_Params ¶ms, uint8_t instance) : _frontend(frontend), _params(params), _instance(instance) {} // update - should be called at 50hz void AP_Camera_Backend::update() { // Check CAMx_OPTIONS and start/stop recording based on arm/disarm if (_params.options.get() & CAMOPTIONS::REC_ARM_DISARM) { if (hal.util->get_soft_armed() != last_is_armed) { last_is_armed = hal.util->get_soft_armed(); record_video(last_is_armed); } } // try to take picture if pending if (trigger_pending) { take_picture(); } // check feedback pin check_feedback(); // time based triggering // if time and distance triggering both are enabled then we only do time based triggering if (time_interval_settings.num_remaining != 0) { uint32_t delta_ms = AP_HAL::millis() - last_picture_time_ms; if (delta_ms > time_interval_settings.time_interval_ms) { if (take_picture()) { // decrease num_remaining except when its -1 i.e. capture forever if (time_interval_settings.num_remaining > 0) { time_interval_settings.num_remaining--; } } } return; } // implement trigger distance if (!is_positive(_params.trigg_dist)) { last_location.lat = 0; last_location.lng = 0; return; } // check GPS status if (AP::gps().status() < AP_GPS::GPS_OK_FIX_3D) { return; } // check vehicle flight mode supports trigg dist if (!_frontend.vehicle_mode_ok_for_trigg_dist()) { return; } // check vehicle roll angle is less than configured maximum const AP_AHRS &ahrs = AP::ahrs(); if ((_frontend.get_roll_max() > 0) && (fabsf(AP::ahrs().roll_sensor * 1e-2f) > _frontend.get_roll_max())) { return; } // get current location. ignore failure because AHRS will provide its best guess Location current_loc; IGNORE_RETURN(ahrs.get_location(current_loc)); // initialise last location to current location if (last_location.lat == 0 && last_location.lng == 0) { last_location = current_loc; return; } if (last_location.lat == current_loc.lat && last_location.lng == current_loc.lng) { // we haven't moved - this can happen as update() may // be called without a new GPS fix return; } // check vehicle has moved at least trigg_dist meters if (current_loc.get_distance(last_location) < _params.trigg_dist) { return; } take_picture(); } // get corresponding mount instance for the camera uint8_t AP_Camera_Backend::get_mount_instance() const { // instance 0 means default if (_params.mount_instance.get() == 0) { return _instance; } return _params.mount_instance.get() - 1; } // get mavlink gimbal device id which is normally mount_instance+1 uint8_t AP_Camera_Backend::get_gimbal_device_id() const { #if HAL_MOUNT_ENABLED const uint8_t mount_instance = get_mount_instance(); AP_Mount* mount = AP::mount(); if (mount != nullptr) { if (mount->get_mount_type(mount_instance) != AP_Mount::Type::None) { return (mount_instance + 1); } } #endif return 0; } // take a picture. returns true on success bool AP_Camera_Backend::take_picture() { // setup feedback pin interrupt or timer setup_feedback_callback(); // check minimum time interval since last picture taken uint32_t now_ms = AP_HAL::millis(); if (now_ms - last_picture_time_ms < (uint32_t)(_params.interval_min * 1000)) { trigger_pending = true; return false; } trigger_pending = false; // trigger actually taking picture and update image count if (trigger_pic()) { image_index++; last_picture_time_ms = now_ms; IGNORE_RETURN(AP::ahrs().get_location(last_location)); log_picture(); return true; } return false; } // take multiple pictures, time_interval between two consecutive pictures is in miliseconds // total_num is number of pictures to be taken, -1 means capture forever void AP_Camera_Backend::take_multiple_pictures(uint32_t time_interval_ms, int16_t total_num) { time_interval_settings = {time_interval_ms, total_num}; } // handle camera control void AP_Camera_Backend::control(float session, float zoom_pos, float zoom_step, float focus_lock, float shooting_cmd, float cmd_id) { // take picture if (is_equal(shooting_cmd, 1.0f)) { take_picture(); } } // send camera feedback message to GCS void AP_Camera_Backend::send_camera_feedback(mavlink_channel_t chan) { int32_t altitude = 0; if (camera_feedback.location.initialised() && !camera_feedback.location.get_alt_cm(Location::AltFrame::ABSOLUTE, altitude)) { // completely ignore this failure! this is a shouldn't-happen // as current_loc should never be in an altitude we can't // convert. } int32_t altitude_rel = 0; if (camera_feedback.location.initialised() && !camera_feedback.location.get_alt_cm(Location::AltFrame::ABOVE_HOME, altitude_rel)) { // completely ignore this failure! this is a shouldn't-happen // as current_loc should never be in an altitude we can't // convert. } // send camera feedback message mavlink_msg_camera_feedback_send( chan, camera_feedback.timestamp_us, // image timestamp 0, // target system id _instance, // camera id image_index, // image index camera_feedback.location.lat, // latitude camera_feedback.location.lng, // longitude altitude*1e-2f, // alt MSL altitude_rel*1e-2f, // alt relative to home camera_feedback.roll_sensor*1e-2f, // roll angle (deg) camera_feedback.pitch_sensor*1e-2f, // pitch angle (deg) camera_feedback.yaw_sensor*1e-2f, // yaw angle (deg) 0.0f, // focal length CAMERA_FEEDBACK_PHOTO, // flags camera_feedback.feedback_trigger_logged_count); // completed image captures } // send camera information message to GCS void AP_Camera_Backend::send_camera_information(mavlink_channel_t chan) const { // prepare vendor, model and cam definition strings const uint8_t vendor_name[32] {}; const uint8_t model_name[32] {}; const char cam_definition_uri[140] {}; const uint32_t cap_flags = CAMERA_CAP_FLAGS_CAPTURE_IMAGE; const float NaN = nanf("0x4152"); // send CAMERA_INFORMATION message mavlink_msg_camera_information_send( chan, AP_HAL::millis(), // time_boot_ms vendor_name, // vendor_name uint8_t[32] model_name, // model_name uint8_t[32] 0, // firmware version uint32_t NaN, // focal_length float (mm) NaN, // sensor_size_h float (mm) NaN, // sensor_size_v float (mm) 0, // resolution_h uint16_t (pix) 0, // resolution_v uint16_t (pix) 0, // lens_id, uint8_t cap_flags, // flags uint32_t (CAMERA_CAP_FLAGS) 0, // cam_definition_version uint16_t cam_definition_uri, // cam_definition_uri char[140] get_gimbal_device_id());// gimbal_device_id uint8_t } // send camera settings message to GCS void AP_Camera_Backend::send_camera_settings(mavlink_channel_t chan) const { const float NaN = nanf("0x4152"); // send CAMERA_SETTINGS message mavlink_msg_camera_settings_send( chan, AP_HAL::millis(), // time_boot_ms CAMERA_MODE_IMAGE, // camera mode (0:image, 1:video, 2:image survey) NaN, // zoomLevel float, percentage from 0 to 100, NaN if unknown NaN); // focusLevel float, percentage from 0 to 100, NaN if unknown } // setup a callback for a feedback pin. When on PX4 with the right FMU // mode we can use the microsecond timer. void AP_Camera_Backend::setup_feedback_callback() { if (_params.feedback_pin <= 0 || timer_installed || isr_installed) { // invalid or already installed return; } // ensure we are in input mode hal.gpio->pinMode(_params.feedback_pin, HAL_GPIO_INPUT); // enable pullup/pulldown uint8_t trigger_polarity = _params.feedback_polarity == 0 ? 0 : 1; hal.gpio->write(_params.feedback_pin, !trigger_polarity); if (hal.gpio->attach_interrupt(_params.feedback_pin, FUNCTOR_BIND_MEMBER(&AP_Camera_Backend::feedback_pin_isr, void, uint8_t, bool, uint32_t), trigger_polarity?AP_HAL::GPIO::INTERRUPT_RISING:AP_HAL::GPIO::INTERRUPT_FALLING)) { isr_installed = true; } else { // install a 1kHz timer to check feedback pin hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Camera_Backend::feedback_pin_timer, void)); timer_installed = true; } } // interrupt handler for interrupt based feedback trigger void AP_Camera_Backend::feedback_pin_isr(uint8_t pin, bool high, uint32_t timestamp_us) { feedback_trigger_timestamp_us = timestamp_us; feedback_trigger_count++; } // check if feedback pin is high for timer based feedback trigger, when // attach_interrupt fails void AP_Camera_Backend::feedback_pin_timer() { uint8_t pin_state = hal.gpio->read(_params.feedback_pin); uint8_t trigger_polarity = _params.feedback_polarity == 0 ? 0 : 1; if (pin_state == trigger_polarity && last_pin_state != trigger_polarity) { feedback_trigger_timestamp_us = AP_HAL::micros(); feedback_trigger_count++; } last_pin_state = pin_state; } // check for feedback pin update and log if necessary void AP_Camera_Backend::check_feedback() { if (feedback_trigger_logged_count != feedback_trigger_count) { const uint32_t timestamp32 = feedback_trigger_timestamp_us; feedback_trigger_logged_count = feedback_trigger_count; // we should consider doing this inside the ISR and pin_timer prep_mavlink_msg_camera_feedback(feedback_trigger_timestamp_us); // log camera message uint32_t tdiff = AP_HAL::micros() - timestamp32; uint64_t timestamp = AP_HAL::micros64(); Write_Camera(timestamp - tdiff); } } void AP_Camera_Backend::prep_mavlink_msg_camera_feedback(uint64_t timestamp_us) { const AP_AHRS &ahrs = AP::ahrs(); if (!ahrs.get_location(camera_feedback.location)) { // completely ignore this failure! AHRS will provide its best guess. } camera_feedback.timestamp_us = timestamp_us; camera_feedback.roll_sensor = ahrs.roll_sensor; camera_feedback.pitch_sensor = ahrs.pitch_sensor; camera_feedback.yaw_sensor = ahrs.yaw_sensor; camera_feedback.feedback_trigger_logged_count = feedback_trigger_logged_count; GCS_SEND_MESSAGE(MSG_CAMERA_FEEDBACK); } // log picture void AP_Camera_Backend::log_picture() { const bool using_feedback_pin = _params.feedback_pin > 0; if (!using_feedback_pin) { // if we're using a feedback pin then when the event occurs we // stash the feedback data. Since we're not using a feedback // pin, we just use "now". prep_mavlink_msg_camera_feedback(AP::gps().time_epoch_usec()); } if (!using_feedback_pin) { Write_Camera(); } else { Write_Trigger(); } } #endif // AP_CAMERA_ENABLED