/*
Please contribute your ideas! See https://dev.ardupilot.org for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
SerialManager allows defining the protocol and baud rates for the available
serial ports and provides helper functions so objects (like a gimbal) can
find which serial port they should use
*/
#include
#include
#include
#include "AP_SerialManager.h"
extern const AP_HAL::HAL& hal;
#ifdef HAL_SERIAL2_PROTOCOL
#define SERIAL2_PROTOCOL HAL_SERIAL2_PROTOCOL
#else
#define SERIAL2_PROTOCOL SerialProtocol_MAVLink
#endif
#ifndef HAL_SERIAL3_PROTOCOL
#define SERIAL3_PROTOCOL SerialProtocol_GPS
#else
#define SERIAL3_PROTOCOL HAL_SERIAL3_PROTOCOL
#endif
#ifndef HAL_SERIAL4_PROTOCOL
#define SERIAL4_PROTOCOL SerialProtocol_GPS
#else
#define SERIAL4_PROTOCOL HAL_SERIAL4_PROTOCOL
#endif
#ifdef HAL_SERIAL5_PROTOCOL
#define SERIAL5_PROTOCOL HAL_SERIAL5_PROTOCOL
#define SERIAL5_BAUD HAL_SERIAL5_BAUD
#else
#define SERIAL5_PROTOCOL SerialProtocol_None
#define SERIAL5_BAUD AP_SERIALMANAGER_MAVLINK_BAUD/1000
#endif
#ifndef HAL_SERIAL6_PROTOCOL
#define SERIAL6_PROTOCOL SerialProtocol_None
#define SERIAL6_BAUD AP_SERIALMANAGER_MAVLINK_BAUD/1000
#else
#define SERIAL6_PROTOCOL HAL_SERIAL6_PROTOCOL
#define SERIAL6_BAUD HAL_SERIAL6_BAUD
#endif
#ifndef HAL_SERIAL7_PROTOCOL
#define SERIAL7_PROTOCOL SerialProtocol_None
#define SERIAL7_BAUD AP_SERIALMANAGER_MAVLINK_BAUD/1000
#else
#define SERIAL7_PROTOCOL HAL_SERIAL7_PROTOCOL
#define SERIAL7_BAUD HAL_SERIAL7_BAUD
#endif
const AP_Param::GroupInfo AP_SerialManager::var_info[] = {
#if SERIALMANAGER_NUM_PORTS > 0
// @Param: 0_BAUD
// @DisplayName: Serial0 baud rate
// @Description: The baud rate used on the USB console. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,460:460800,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("0_BAUD", 0, AP_SerialManager, state[0].baud, AP_SERIALMANAGER_CONSOLE_BAUD/1000),
// @Param: 0_PROTOCOL
// @DisplayName: Console protocol selection
// @Description: Control what protocol to use on the console.
// @Values: 1:MAVlink1, 2:MAVLink2
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("0_PROTOCOL", 11, AP_SerialManager, state[0].protocol, SerialProtocol_MAVLink2),
#endif
#if SERIALMANAGER_NUM_PORTS > 1
// @Param: 1_PROTOCOL
// @DisplayName: Telem1 protocol selection
// @Description: Control what protocol to use on the Telem1 port. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("1_PROTOCOL", 1, AP_SerialManager, state[1].protocol, SerialProtocol_MAVLink),
// @Param: 1_BAUD
// @DisplayName: Telem1 Baud Rate
// @Description: The baud rate used on the Telem1 port. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("1_BAUD", 2, AP_SerialManager, state[1].baud, AP_SERIALMANAGER_MAVLINK_BAUD/1000),
#endif
#if SERIALMANAGER_NUM_PORTS > 2
// @Param: 2_PROTOCOL
// @DisplayName: Telemetry 2 protocol selection
// @Description: Control what protocol to use on the Telem2 port. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("2_PROTOCOL", 3, AP_SerialManager, state[2].protocol, SERIAL2_PROTOCOL),
// @Param: 2_BAUD
// @DisplayName: Telemetry 2 Baud Rate
// @Description: The baud rate of the Telem2 port. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("2_BAUD", 4, AP_SerialManager, state[2].baud, AP_SERIALMANAGER_MAVLINK_BAUD/1000),
#endif
#if SERIALMANAGER_NUM_PORTS > 3
// @Param: 3_PROTOCOL
// @DisplayName: Serial 3 (GPS) protocol selection
// @Description: Control what protocol Serial 3 (GPS) should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("3_PROTOCOL", 5, AP_SerialManager, state[3].protocol, SERIAL3_PROTOCOL),
// @Param: 3_BAUD
// @DisplayName: Serial 3 (GPS) Baud Rate
// @Description: The baud rate used for the Serial 3 (GPS). Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("3_BAUD", 6, AP_SerialManager, state[3].baud, AP_SERIALMANAGER_GPS_BAUD/1000),
#endif
#if SERIALMANAGER_NUM_PORTS > 4
// @Param: 4_PROTOCOL
// @DisplayName: Serial4 protocol selection
// @Description: Control what protocol Serial4 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("4_PROTOCOL", 7, AP_SerialManager, state[4].protocol, SERIAL4_PROTOCOL),
// @Param: 4_BAUD
// @DisplayName: Serial 4 Baud Rate
// @Description: The baud rate used for Serial4. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("4_BAUD", 8, AP_SerialManager, state[4].baud, AP_SERIALMANAGER_GPS_BAUD/1000),
#endif
#if SERIALMANAGER_NUM_PORTS > 5
// @Param: 5_PROTOCOL
// @DisplayName: Serial5 protocol selection
// @Description: Control what protocol Serial5 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("5_PROTOCOL", 9, AP_SerialManager, state[5].protocol, SERIAL5_PROTOCOL),
// @Param: 5_BAUD
// @DisplayName: Serial 5 Baud Rate
// @Description: The baud rate used for Serial5. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("5_BAUD", 10, AP_SerialManager, state[5].baud, SERIAL5_BAUD),
#endif
// index 11 used by 0_PROTOCOL
#if SERIALMANAGER_NUM_PORTS > 6
// @Param: 6_PROTOCOL
// @DisplayName: Serial6 protocol selection
// @Description: Control what protocol Serial6 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("6_PROTOCOL", 12, AP_SerialManager, state[6].protocol, SERIAL6_PROTOCOL),
// @Param: 6_BAUD
// @DisplayName: Serial 6 Baud Rate
// @Description: The baud rate used for Serial6. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("6_BAUD", 13, AP_SerialManager, state[6].baud, SERIAL6_BAUD),
#endif
#if SERIALMANAGER_NUM_PORTS > 1
// @Param: 1_OPTIONS
// @DisplayName: Telem1 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire. The Swap option allows the RX and TX pins to be swapped on STM32F7 based boards.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("1_OPTIONS", 14, AP_SerialManager, state[1].options, 0),
#endif
#if SERIALMANAGER_NUM_PORTS > 2
// @Param: 2_OPTIONS
// @DisplayName: Telem2 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("2_OPTIONS", 15, AP_SerialManager, state[2].options, 0),
#endif
#if SERIALMANAGER_NUM_PORTS > 3
// @Param: 3_OPTIONS
// @DisplayName: Serial3 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("3_OPTIONS", 16, AP_SerialManager, state[3].options, 0),
#endif
#if SERIALMANAGER_NUM_PORTS > 4
// @Param: 4_OPTIONS
// @DisplayName: Serial4 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("4_OPTIONS", 17, AP_SerialManager, state[4].options, 0),
#endif
#if SERIALMANAGER_NUM_PORTS > 5
// @Param: 5_OPTIONS
// @DisplayName: Serial5 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("5_OPTIONS", 18, AP_SerialManager, state[5].options, 0),
#endif
#if SERIALMANAGER_NUM_PORTS > 6
// @Param: 6_OPTIONS
// @DisplayName: Serial6 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("6_OPTIONS", 19, AP_SerialManager, state[6].options, 0),
#endif
// @Param: _PASS1
// @DisplayName: Serial passthru first port
// @Description: This sets one side of pass-through between two serial ports. Once both sides are set then all data received on either port will be passed to the other port
// @Values: -1:Disabled,0:Serial0,1:Serial1,2:Serial2,3:Serial3,4:Serial4,5:Serial5,6:Serial6
// @User: Advanced
AP_GROUPINFO("_PASS1", 20, AP_SerialManager, passthru_port1, 0),
// @Param: _PASS2
// @DisplayName: Serial passthru second port
// @Description: This sets one side of pass-through between two serial ports. Once both sides are set then all data received on either port will be passed to the other port
// @Values: -1:Disabled,0:Serial0,1:Serial1,2:Serial2,3:Serial3,4:Serial4,5:Serial5,6:Serial6
// @User: Advanced
AP_GROUPINFO("_PASS2", 21, AP_SerialManager, passthru_port2, -1),
// @Param: _PASSTIMO
// @DisplayName: Serial passthru timeout
// @Description: This sets a timeout for serial pass-through in seconds. When the pass-through is enabled by setting the SERIAL_PASS1 and SERIAL_PASS2 parameters then it remains in effect until no data comes from the first port for SERIAL_PASSTIMO seconds. This allows the port to revent to its normal usage (such as MAVLink connection to a GCS) when it is no longer needed. A value of 0 means no timeout.
// @Range: 0 120
// @Units: s
// @User: Advanced
AP_GROUPINFO("_PASSTIMO", 22, AP_SerialManager, passthru_timeout, 15),
#if SERIALMANAGER_NUM_PORTS > 7
// @Param: 7_PROTOCOL
// @DisplayName: Serial7 protocol selection
// @Description: Control what protocol Serial7 port should be used for. Note that the Frsky options require external converter hardware. See the wiki for details.
// @Values: -1:None, 1:MAVLink1, 2:MAVLink2, 3:Frsky D, 4:Frsky SPort, 5:GPS, 7:Alexmos Gimbal Serial, 8:SToRM32 Gimbal Serial, 9:Rangefinder, 10:FrSky SPort Passthrough (OpenTX), 11:Lidar360, 13:Beacon, 14:Volz servo out, 15:SBus servo out, 16:ESC Telemetry, 17:Devo Telemetry, 18:OpticalFlow, 19:RobotisServo, 20:NMEA Output, 21:WindVane, 22:SLCAN, 23:RCIN, 24:MegaSquirt EFI, 25:LTM, 26:RunCam
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("7_PROTOCOL", 23, AP_SerialManager, state[7].protocol, SERIAL7_PROTOCOL),
// @Param: 7_BAUD
// @DisplayName: Serial 7 Baud Rate
// @Description: The baud rate used for Serial7. Most stm32-based boards can support rates of up to 1500. If you setup a rate you cannot support and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults.
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,256:256000,500:500000,921:921600,1500:1500000
// @User: Standard
AP_GROUPINFO("7_BAUD", 24, AP_SerialManager, state[7].baud, SERIAL7_BAUD),
// @Param: 7_OPTIONS
// @DisplayName: Serial7 options
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:Swap, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("7_OPTIONS", 25, AP_SerialManager, state[7].options, 0),
#endif
AP_GROUPEND
};
// singleton instance
AP_SerialManager *AP_SerialManager::_singleton;
// Constructor
AP_SerialManager::AP_SerialManager()
{
_singleton = this;
// setup parameter defaults
AP_Param::setup_object_defaults(this, var_info);
}
// init_console - initialise console at default baud rate
void AP_SerialManager::init_console()
{
// initialise console immediately at default size and baud
#if SERIALMANAGER_NUM_PORTS > 0
state[0].uart = hal.uartA; // serial0, uartA, always console
state[0].uart->begin(AP_SERIALMANAGER_CONSOLE_BAUD,
AP_SERIALMANAGER_CONSOLE_BUFSIZE_RX,
AP_SERIALMANAGER_CONSOLE_BUFSIZE_TX);
#endif
}
extern bool g_nsh_should_exit;
// init - // init - initialise serial ports
void AP_SerialManager::init()
{
// always reset passthru port2 on boot
passthru_port2.set_and_save_ifchanged(-1);
// initialise pointers to serial ports
#if SERIALMANAGER_NUM_PORTS > 1
state[1].uart = hal.uartC; // serial1, uartC, normally telem1
#endif
#if SERIALMANAGER_NUM_PORTS > 2
state[2].uart = hal.uartD; // serial2, uartD, normally telem2
#endif
#if SERIALMANAGER_NUM_PORTS > 3
state[3].uart = hal.uartB; // serial3, uartB, normally 1st GPS
#endif
#if SERIALMANAGER_NUM_PORTS > 4
state[4].uart = hal.uartE; // serial4, uartE, normally 2nd GPS
#endif
#if SERIALMANAGER_NUM_PORTS > 5
state[5].uart = hal.uartF; // serial5
#endif
#if SERIALMANAGER_NUM_PORTS > 6
state[6].uart = hal.uartG; // serial6
#endif
#if SERIALMANAGER_NUM_PORTS > 7
state[7].uart = hal.uartH; // serial7
#endif
#if SERIALMANAGER_NUM_PORTS > 0
if (state[0].uart == nullptr) {
init_console();
}
#endif
// initialise serial ports
for (uint8_t i=1; ibegin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_MAVLINK_BUFSIZE_RX,
AP_SERIALMANAGER_MAVLINK_BUFSIZE_TX);
break;
case SerialProtocol_FrSky_D:
// Note baudrate is hardcoded to 9600
state[i].baud = AP_SERIALMANAGER_FRSKY_D_BAUD/1000; // update baud param in case user looks at it
// begin is handled by AP_Frsky_telem library
break;
case SerialProtocol_FrSky_SPort:
case SerialProtocol_FrSky_SPort_Passthrough:
// Note baudrate is hardcoded to 57600
state[i].baud = AP_SERIALMANAGER_FRSKY_SPORT_BAUD/1000; // update baud param in case user looks at it
// begin is handled by AP_Frsky_telem library
break;
case SerialProtocol_GPS:
case SerialProtocol_GPS2:
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_GPS_BUFSIZE_RX,
AP_SERIALMANAGER_GPS_BUFSIZE_TX);
break;
case SerialProtocol_AlexMos:
// Note baudrate is hardcoded to 115200
state[i].baud = AP_SERIALMANAGER_ALEXMOS_BAUD / 1000; // update baud param in case user looks at it
state[i].uart->begin(AP_SERIALMANAGER_ALEXMOS_BAUD,
AP_SERIALMANAGER_ALEXMOS_BUFSIZE_RX,
AP_SERIALMANAGER_ALEXMOS_BUFSIZE_TX);
break;
case SerialProtocol_SToRM32:
// Note baudrate is hardcoded to 115200
state[i].baud = AP_SERIALMANAGER_SToRM32_BAUD / 1000; // update baud param in case user looks at it
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_SToRM32_BUFSIZE_RX,
AP_SERIALMANAGER_SToRM32_BUFSIZE_TX);
break;
case SerialProtocol_Aerotenna_uLanding:
state[i].protocol.set_and_save(SerialProtocol_Rangefinder);
break;
case SerialProtocol_Volz:
// Note baudrate is hardcoded to 115200
state[i].baud = AP_SERIALMANAGER_VOLZ_BAUD; // update baud param in case user looks at it
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_VOLZ_BUFSIZE_RX,
AP_SERIALMANAGER_VOLZ_BUFSIZE_TX);
state[i].uart->set_unbuffered_writes(true);
state[i].uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
break;
case SerialProtocol_Sbus1:
state[i].baud = AP_SERIALMANAGER_SBUS1_BAUD / 1000; // update baud param in case user looks at it
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_SBUS1_BUFSIZE_RX,
AP_SERIALMANAGER_SBUS1_BUFSIZE_TX);
state[i].uart->configure_parity(2); // enable even parity
state[i].uart->set_stop_bits(2);
state[i].uart->set_unbuffered_writes(true);
state[i].uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
break;
case SerialProtocol_ESCTelemetry:
// ESC telemetry protocol from BLHeli32 ESCs. Note that baudrate is hardcoded to 115200
state[i].baud = 115200;
state[i].uart->begin(map_baudrate(state[i].baud), 30, 30);
state[i].uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
break;
case SerialProtocol_Robotis:
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_ROBOTIS_BUFSIZE_RX,
AP_SERIALMANAGER_ROBOTIS_BUFSIZE_TX);
state[i].uart->set_unbuffered_writes(true);
state[i].uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
break;
case SerialProtocol_SLCAN:
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_SLCAN_BUFSIZE_RX,
AP_SERIALMANAGER_SLCAN_BUFSIZE_TX);
break;
#ifndef HAL_BUILD_AP_PERIPH
case SerialProtocol_RCIN:
AP::RC().add_uart(state[i].uart);
break;
#endif
case SerialProtocol_EFI_MS:
state[i].baud = AP_SERIALMANAGER_EFI_MS_BAUD; // update baud param in case user looks at it
state[i].uart->begin(map_baudrate(state[i].baud),
AP_SERIALMANAGER_EFI_MS_BUFSIZE_RX,
AP_SERIALMANAGER_EFI_MS_BUFSIZE_TX);
state[i].uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
break;
default:
state[i].uart->begin(map_baudrate(state[i].baud));
}
}
}
}
const AP_SerialManager::UARTState *AP_SerialManager::find_protocol_instance(enum SerialProtocol protocol, uint8_t instance) const
{
uint8_t found_instance = 0;
// search for matching protocol
for(uint8_t i=0; iuart;
}
// find_baudrate - searches available serial ports for the first instance that allows the given protocol
// instance should be zero if searching for the first instance, 1 for the second, etc
// returns baudrate on success, 0 if a serial port cannot be found
uint32_t AP_SerialManager::find_baudrate(enum SerialProtocol protocol, uint8_t instance) const
{
const struct UARTState *_state = find_protocol_instance(protocol, instance);
if (_state == nullptr) {
return 0;
}
return map_baudrate(_state->baud);
}
// get_mavlink_channel - provides the mavlink channel associated with a given protocol
// instance should be zero if searching for the first instance, 1 for the second, etc
// returns true if a channel is found, false if not
bool AP_SerialManager::get_mavlink_channel(enum SerialProtocol protocol, uint8_t instance, mavlink_channel_t &mav_chan) const
{
// check for MAVLink
if (protocol_match(protocol, SerialProtocol_MAVLink)) {
if (instance < MAVLINK_COMM_NUM_BUFFERS) {
mav_chan = (mavlink_channel_t)(MAVLINK_COMM_0 + instance);
return true;
}
}
// report failure
return false;
}
// get_mavlink_protocol - provides the specific MAVLink protocol for a
// given channel, or SerialProtocol_None if not found
AP_SerialManager::SerialProtocol AP_SerialManager::get_mavlink_protocol(mavlink_channel_t mav_chan) const
{
uint8_t instance = 0;
uint8_t chan_idx = (uint8_t)(mav_chan - MAVLINK_COMM_0);
for (uint8_t i=0; iset_blocking_writes(blocking);
}
}
}
/*
* map from a 16 bit EEPROM baud rate to a real baud rate. For
* stm32-based boards we can do 1.5MBit, although 921600 is more
* reliable.
*/
uint32_t AP_SerialManager::map_baudrate(int32_t rate)
{
if (rate <= 0) {
rate = 57;
}
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 100: return 100000;
case 111: return 111100;
case 115: return 115200;
case 230: return 230400;
case 256: return 256000;
case 460: return 460800;
case 500: return 500000;
case 921: return 921600;
case 1500: return 1500000;
}
if (rate > 2000) {
// assume it is a direct baudrate. This allows for users to
// set an exact baudrate as long as it is over 2000 baud
return (uint32_t)rate;
}
// otherwise allow any other kbaud rate
return rate*1000;
}
// protocol_match - returns true if the protocols match
bool AP_SerialManager::protocol_match(enum SerialProtocol protocol1, enum SerialProtocol protocol2) const
{
// check for obvious match
if (protocol1 == protocol2) {
return true;
}
// mavlink match
if (((protocol1 == SerialProtocol_MAVLink) || (protocol1 == SerialProtocol_MAVLink2)) &&
((protocol2 == SerialProtocol_MAVLink) || (protocol2 == SerialProtocol_MAVLink2))) {
return true;
}
// gps match
if (((protocol1 == SerialProtocol_GPS) || (protocol1 == SerialProtocol_GPS2)) &&
((protocol2 == SerialProtocol_GPS) || (protocol2 == SerialProtocol_GPS2))) {
return true;
}
return false;
}
// setup any special options
void AP_SerialManager::set_options(uint16_t i)
{
struct UARTState &opt = state[i];
// pass through to HAL
if (!opt.uart->set_options(opt.options)) {
hal.console->printf("Unable to setup options for Serial%u\n", i);
}
}
// get the passthru ports if enabled
bool AP_SerialManager::get_passthru(AP_HAL::UARTDriver *&port1, AP_HAL::UARTDriver *&port2, uint8_t &timeout_s) const
{
if (passthru_port2 < 0 ||
passthru_port2 >= SERIALMANAGER_NUM_PORTS ||
passthru_port1 < 0 ||
passthru_port1 >= SERIALMANAGER_NUM_PORTS) {
return false;
}
port1 = state[passthru_port1].uart;
port2 = state[passthru_port2].uart;
timeout_s = MAX(passthru_timeout, 0);
return true;
}
// disable passthru by settings SERIAL_PASS2 to -1
void AP_SerialManager::disable_passthru(void)
{
passthru_port2.set_and_notify(-1);
}
// accessor for AP_Periph to set baudrate and type
void AP_SerialManager::set_protocol_and_baud(uint8_t sernum, enum SerialProtocol protocol, uint32_t baudrate)
{
if (sernum <= ARRAY_SIZE(state)) {
state[sernum].protocol.set(protocol);
state[sernum].baud.set(baudrate);
}
}
namespace AP {
AP_SerialManager &serialmanager()
{
return *AP_SerialManager::get_singleton();
}
}