#include "LR_MsgHandler.h" extern const AP_HAL::HAL& hal; LR_MsgHandler::LR_MsgHandler(struct log_Format &_f, DataFlash_Class &_dataflash, uint64_t &_last_timestamp_usec) : dataflash(_dataflash), last_timestamp_usec(_last_timestamp_usec), MsgHandler(_f) { } void LR_MsgHandler::wait_timestamp_usec(uint64_t timestamp) { last_timestamp_usec = timestamp; hal.scheduler->stop_clock(timestamp); } void LR_MsgHandler::wait_timestamp(uint32_t timestamp) { uint64_t usecs = timestamp*1000UL; wait_timestamp_usec(usecs); } void LR_MsgHandler::wait_timestamp_from_msg(uint8_t *msg) { uint64_t time_us; uint64_t time_ms; if (field_value(msg, "TimeUS", time_us)) { // 64-bit timestamp present - great! wait_timestamp_usec(time_us); } else if (field_value(msg, "TimeMS", time_ms)) { // there is special rounding code that needs to be crossed in // wait_timestamp: wait_timestamp(time_ms); } else { ::printf("No timestamp on message"); } } /* * subclasses to handle specific messages below here */ void LR_MsgHandler_AHR2::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); attitude_from_msg(msg, ahr2_attitude, "Roll", "Pitch", "Yaw"); } void LR_MsgHandler_ARM::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); uint8_t ArmState = require_field_uint8_t(msg, "ArmState"); hal.util->set_soft_armed(ArmState); printf("Armed state: %u at %lu\n", (unsigned)ArmState, (unsigned long)hal.scheduler->millis()); } void LR_MsgHandler_ARSP::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); airspeed.setHIL(require_field_float(msg, "Airspeed"), require_field_float(msg, "DiffPress"), require_field_float(msg, "Temp")); } void LR_MsgHandler_FRAM::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); } void LR_MsgHandler_ATT::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); attitude_from_msg(msg, attitude, "Roll", "Pitch", "Yaw"); } void LR_MsgHandler_CHEK::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); check_state.time_us = hal.scheduler->micros64(); attitude_from_msg(msg, check_state.euler, "Roll", "Pitch", "Yaw"); check_state.euler *= radians(1); location_from_msg(msg, check_state.pos, "Lat", "Lng", "Alt"); require_field(msg, "VN", check_state.velocity.x); require_field(msg, "VE", check_state.velocity.y); require_field(msg, "VD", check_state.velocity.z); } void LR_MsgHandler_BARO::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); baro.setHIL(0, require_field_float(msg, "Press"), require_field_int16_t(msg, "Temp") * 0.01f); } #define DATA_ARMED 10 #define DATA_DISARMED 11 void LR_MsgHandler_Event::process_message(uint8_t *msg) { uint8_t id = require_field_uint8_t(msg, "Id"); if (id == DATA_ARMED) { hal.util->set_soft_armed(true); printf("Armed at %lu\n", (unsigned long)hal.scheduler->millis()); } else if (id == DATA_DISARMED) { hal.util->set_soft_armed(false); printf("Disarmed at %lu\n", (unsigned long)hal.scheduler->millis()); } } void LR_MsgHandler_GPS2::process_message(uint8_t *msg) { // only LOG_GPS_MSG gives us relative altitude. We still log // the relative altitude when we get a LOG_GPS2_MESSAGE - but // the value we use (probably) comes from the most recent // LOG_GPS_MESSAGE message! update_from_msg_gps(1, msg, false); } void LR_MsgHandler_GPS_Base::update_from_msg_gps(uint8_t gps_offset, uint8_t *msg, bool responsible_for_relalt) { uint64_t time_us; if (! field_value(msg, "TimeUS", time_us)) { uint32_t timestamp; require_field(msg, "T", timestamp); time_us = timestamp * 1000; } wait_timestamp_usec(time_us); Location loc; location_from_msg(msg, loc, "Lat", "Lng", "Alt"); Vector3f vel; ground_vel_from_msg(msg, vel, "Spd", "GCrs", "VZ"); uint8_t status = require_field_uint8_t(msg, "Status"); uint8_t hdop = 0; if (! field_value(msg, "HDop", hdop) && ! field_value(msg, "HDp", hdop)) { hdop = 20; } gps.setHIL(gps_offset, (AP_GPS::GPS_Status)status, uint32_t(time_us/1000), loc, vel, require_field_uint8_t(msg, "NSats"), hdop, require_field_float(msg, "VZ") != 0); if (status == AP_GPS::GPS_OK_FIX_3D && ground_alt_cm == 0) { ground_alt_cm = require_field_int32_t(msg, "Alt"); } if (responsible_for_relalt) { // this could possibly check for the presence of "RelAlt" label? int32_t tmp; if (! field_value(msg, "RAlt", tmp)) { tmp = require_field_int32_t(msg, "RelAlt"); } rel_altitude = 0.01f * tmp; } } void LR_MsgHandler_GPS::process_message(uint8_t *msg) { update_from_msg_gps(0, msg, true); } void LR_MsgHandler_IMU2::process_message(uint8_t *msg) { update_from_msg_imu(1, msg); } void LR_MsgHandler_IMU3::process_message(uint8_t *msg) { update_from_msg_imu(2, msg); } void LR_MsgHandler_IMU_Base::update_from_msg_imu(uint8_t imu_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); uint8_t this_imu_mask = 1 << imu_offset; if (gyro_mask & this_imu_mask) { Vector3f gyro; require_field(msg, "Gyr", gyro); ins.set_gyro(imu_offset, gyro); } if (accel_mask & this_imu_mask) { Vector3f accel2; require_field(msg, "Acc", accel2); ins.set_accel(imu_offset, accel2); } } void LR_MsgHandler_IMU::process_message(uint8_t *msg) { update_from_msg_imu(0, msg); } void LR_MsgHandler_IMT_Base::update_from_msg_imt(uint8_t imu_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); if (!use_imt) { return; } uint8_t this_imu_mask = 1 << imu_offset; float delta_time = 0; require_field(msg, "DelT", delta_time); ins.set_delta_time(delta_time); if (gyro_mask & this_imu_mask) { Vector3f d_angle; require_field(msg, "DelA", d_angle); ins.set_delta_angle(imu_offset, d_angle); } if (accel_mask & this_imu_mask) { float dvt = 0; require_field(msg, "DelvT", dvt); Vector3f d_velocity; require_field(msg, "DelV", d_velocity); ins.set_delta_velocity(imu_offset, dvt, d_velocity); } } void LR_MsgHandler_IMT::process_message(uint8_t *msg) { update_from_msg_imt(0, msg); } void LR_MsgHandler_IMT2::process_message(uint8_t *msg) { update_from_msg_imt(1, msg); } void LR_MsgHandler_IMT3::process_message(uint8_t *msg) { update_from_msg_imt(2, msg); } void LR_MsgHandler_MAG2::process_message(uint8_t *msg) { update_from_msg_compass(1, msg); } void LR_MsgHandler_MAG_Base::update_from_msg_compass(uint8_t compass_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); Vector3f mag; require_field(msg, "Mag", mag); Vector3f mag_offset; require_field(msg, "Ofs", mag_offset); compass.setHIL(compass_offset, mag - mag_offset); // compass_offset is which compass we are setting info for; // mag_offset is a vector indicating the compass' calibration... compass.set_offsets(compass_offset, mag_offset); } void LR_MsgHandler_MAG::process_message(uint8_t *msg) { update_from_msg_compass(0, msg); } #include #include "VehicleType.h" void LR_MsgHandler_MSG::process_message(uint8_t *msg) { const uint8_t msg_text_len = 64; char msg_text[msg_text_len]; require_field(msg, "Message", msg_text, msg_text_len); if (strncmp(msg_text, "ArduPlane", strlen("ArduPlane")) == 0) { vehicle = VehicleType::VEHICLE_PLANE; ::printf("Detected Plane\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); ahrs.set_fly_forward(true); } else if (strncmp(msg_text, "ArduCopter", strlen("ArduCopter")) == 0 || strncmp(msg_text, "APM:Copter", strlen("APM:Copter")) == 0) { vehicle = VehicleType::VEHICLE_COPTER; ::printf("Detected Copter\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); ahrs.set_fly_forward(false); } else if (strncmp(msg_text, "ArduRover", strlen("ArduRover")) == 0) { vehicle = VehicleType::VEHICLE_ROVER; ::printf("Detected Rover\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); ahrs.set_fly_forward(true); } } void LR_MsgHandler_NTUN_Copter::process_message(uint8_t *msg) { inavpos = Vector3f(require_field_float(msg, "PosX") * 0.01f, require_field_float(msg, "PosY") * 0.01f, 0); } bool LR_MsgHandler::set_parameter(const char *name, float value) { const char *ignore_parms[] = { "GPS_TYPE", "AHRS_EKF_USE", "COMPASS_ORIENT", "COMPASS_ORIENT2", "COMPASS_ORIENT3"}; for (uint8_t i=0; iset(value); ::printf("Set %s to %f\n", name, value); } else if (var_type == AP_PARAM_INT32) { ((AP_Int32 *)vp)->set(value); ::printf("Set %s to %d\n", name, (int)value); } else if (var_type == AP_PARAM_INT16) { ((AP_Int16 *)vp)->set(value); ::printf("Set %s to %d\n", name, (int)value); } else if (var_type == AP_PARAM_INT8) { ((AP_Int8 *)vp)->set(value); ::printf("Set %s to %d\n", name, (int)value); } else { // we don't support mavlink set on this parameter return false; } return true; } void LR_MsgHandler_PARM::process_message(uint8_t *msg) { const uint8_t parameter_name_len = AP_MAX_NAME_SIZE + 1; // null-term char parameter_name[parameter_name_len]; uint64_t time_us; if (field_value(msg, "TimeUS", time_us)) { wait_timestamp_usec(time_us); } else { // older logs can have a lot of FMT and PARM messages up the // front which don't have timestamps. Since in Replay we run // DataFlash's IO only when stop_clock is called, we can // overflow DataFlash's ringbuffer. This should force us to // do IO: hal.scheduler->stop_clock(last_timestamp_usec); } require_field(msg, "Name", parameter_name, parameter_name_len); set_parameter(parameter_name, require_field_float(msg, "Value")); } void LR_MsgHandler_SIM::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); attitude_from_msg(msg, sim_attitude, "Roll", "Pitch", "Yaw"); }