/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * APM_Baro.cpp - barometer driver * */ #include #include #include #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_Baro::var_info[] PROGMEM = { // NOTE: Index numbers 0 and 1 were for the old integer // ground temperature and pressure // @Param: ABS_PRESS // @DisplayName: Absolute Pressure // @Description: calibrated ground pressure in Pascals // @Units: pascals // @Increment: 1 AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, sensors[0].ground_pressure, 0), // @Param: TEMP // @DisplayName: ground temperature // @Description: calibrated ground temperature in degrees Celsius // @Units: degrees celsius // @Increment: 1 AP_GROUPINFO("TEMP", 3, AP_Baro, sensors[0].ground_temperature, 0), // @Param: ALT_OFFSET // @DisplayName: altitude offset // @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed. // @Units: meters // @Range: -128 127 // @Increment: 1 AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0), AP_GROUPEND }; /* AP_Baro constructor */ AP_Baro::AP_Baro() : _num_drivers(0), _num_sensors(0), _primary(0), _last_altitude_EAS2TAS(0.0f), _EAS2TAS(0.0f), _external_temperature(0.0f), _last_external_temperature_ms(0), _hil_mode(false) { memset(sensors, 0, sizeof(sensors)); AP_Param::setup_object_defaults(this, var_info); } // calibrate the barometer. This must be called at least once before // the altitude() or climb_rate() interfaces can be used void AP_Baro::calibrate() { // reset the altitude offset when we calibrate. The altitude // offset is supposed to be for within a flight _alt_offset.set_and_save(0); // start by assuming all sensors are calibrated (for healthy() test) for (uint8_t i=0; i<_num_sensors; i++) { sensors[i].calibrated = true; sensors[i].alt_ok = true; } // let the barometer settle for a full second after startup // the MS5611 reads quite a long way off for the first second, // leading to about 1m of error if we don't wait for (uint8_t i = 0; i < 10; i++) { uint32_t tstart = hal.scheduler->millis(); do { update(); if (hal.scheduler->millis() - tstart > 500) { hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [2]\r\n")); } hal.scheduler->delay(10); } while (!healthy()); hal.scheduler->delay(100); } // now average over 5 values for the ground pressure and // temperature settings float sum_pressure[BARO_MAX_INSTANCES] = {0}; float sum_temperature[BARO_MAX_INSTANCES] = {0}; uint8_t count[BARO_MAX_INSTANCES] = {0}; const uint8_t num_samples = 5; for (uint8_t c = 0; c < num_samples; c++) { uint32_t tstart = hal.scheduler->millis(); do { update(); if (hal.scheduler->millis() - tstart > 500) { hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [3]\r\n")); } } while (!healthy()); for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { sum_pressure[i] += sensors[i].pressure; sum_temperature[i] += sensors[i].temperature; count[i] += 1; } } hal.scheduler->delay(100); } for (uint8_t i=0; i<_num_sensors; i++) { if (count[i] == 0) { sensors[i].calibrated = false; } else { sensors[i].ground_pressure.set_and_save(sum_pressure[i] / count[i]); sensors[i].ground_temperature.set_and_save(sum_temperature[i] / count[i]); } } // panic if all sensors are not calibrated for (uint8_t i=0; i<_num_sensors; i++) { if (sensors[i].calibrated) { return; } } hal.scheduler->panic(PSTR("AP_Baro: all sensors uncalibrated")); } /* update the barometer calibration this updates the baro ground calibration to the current values. It can be used before arming to keep the baro well calibrated */ void AP_Baro::update_calibration() { for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { sensors[i].ground_pressure.set(get_pressure(i)); } float last_temperature = sensors[i].ground_temperature; sensors[i].ground_temperature.set(get_calibration_temperature(i)); if (fabsf(last_temperature - sensors[i].ground_temperature) > 3) { // reset _EAS2TAS to force it to recalculate. This happens // when a digital airspeed sensor comes online _EAS2TAS = 0; } } } // return altitude difference in meters between current pressure and a // given base_pressure in Pascal float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const { float ret; #if HAL_CPU_CLASS <= HAL_CPU_CLASS_16 // on slower CPUs use a less exact, but faster, calculation float scaling = base_pressure / pressure; float temp = get_calibration_temperature() + 273.15f; ret = logf(scaling) * temp * 29.271267f; #else // on faster CPUs use a more exact calculation float scaling = pressure / base_pressure; float temp = get_calibration_temperature() + 273.15f; // This is an exact calculation that is within +-2.5m of the standard atmosphere tables // in the troposphere (up to 11,000 m amsl). ret = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling))); #endif return ret; } // return current scale factor that converts from equivalent to true airspeed // valid for altitudes up to 10km AMSL // assumes standard atmosphere lapse rate float AP_Baro::get_EAS2TAS(void) { float altitude = get_altitude(); if ((fabsf(altitude - _last_altitude_EAS2TAS) < 100.0f) && !is_zero(_EAS2TAS)) { // not enough change to require re-calculating return _EAS2TAS; } float tempK = get_calibration_temperature() + 273.15f - 0.0065f * altitude; _EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (287.26f * tempK))); _last_altitude_EAS2TAS = altitude; return _EAS2TAS; } // return air density / sea level density - decreases as altitude climbs float AP_Baro::get_air_density_ratio(void) { float eas2tas = get_EAS2TAS(); if (eas2tas > 0.0f) { return 1.0f/(sq(get_EAS2TAS())); } else { return 1.0f; } } // return current climb_rate estimeate relative to time that calibrate() // was called. Returns climb rate in meters/s, positive means up // note that this relies on read() being called regularly to get new data float AP_Baro::get_climb_rate(void) { // we use a 7 point derivative filter on the climb rate. This seems // to produce somewhat reasonable results on real hardware return _climb_rate_filter.slope() * 1.0e3f; } /* set external temperature to be used for calibration (degrees C) */ void AP_Baro::set_external_temperature(float temperature) { _external_temperature = temperature; _last_external_temperature_ms = hal.scheduler->millis(); } /* get the temperature in degrees C to be used for calibration purposes */ float AP_Baro::get_calibration_temperature(uint8_t instance) const { // if we have a recent external temperature then use it if (_last_external_temperature_ms != 0 && hal.scheduler->millis() - _last_external_temperature_ms < 10000) { return _external_temperature; } // if we don't have an external temperature then use the minimum // of the barometer temperature and 25 degrees C. The reason for // not just using the baro temperature is it tends to read high, // often 30 degrees above the actual temperature. That means the // EAS2TAS tends to be off by quite a large margin float ret = get_temperature(instance); if (ret > 25) { ret = 25; } return ret; } /* initialise the barometer object, loading backend drivers */ void AP_Baro::init(void) { if (_hil_mode) { drivers[0] = new AP_Baro_HIL(*this); _num_drivers = 1; return; } #if HAL_BARO_DEFAULT == HAL_BARO_PX4 || HAL_BARO_DEFAULT == HAL_BARO_VRBRAIN drivers[0] = new AP_Baro_PX4(*this); _num_drivers = 1; #elif HAL_BARO_DEFAULT == HAL_BARO_HIL drivers[0] = new AP_Baro_HIL(*this); _num_drivers = 1; #elif HAL_BARO_DEFAULT == HAL_BARO_BMP085 { drivers[0] = new AP_Baro_BMP085(*this); _num_drivers = 1; } #elif HAL_BARO_DEFAULT == HAL_BARO_MS5611 { drivers[0] = new AP_Baro_MS5611(*this, new AP_SerialBus_I2C(MS5611_I2C_ADDR), false); _num_drivers = 1; } #elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_SPI { drivers[0] = new AP_Baro_MS5611(*this, new AP_SerialBus_SPI(AP_HAL::SPIDevice_MS5611, AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH), true); _num_drivers = 1; } #endif if (_num_drivers == 0 || _num_sensors == 0 || drivers[0] == NULL) { hal.scheduler->panic(PSTR("Baro: unable to initialise driver")); } } /* call update on all drivers */ void AP_Baro::update(void) { if (!_hil_mode) { for (uint8_t i=0; i<_num_drivers; i++) { drivers[i]->update(); } } // consider a sensor as healthy if it has had an update in the // last 0.5 seconds uint32_t now = hal.scheduler->millis(); for (uint8_t i=0; i<_num_sensors; i++) { sensors[i].healthy = (now - sensors[i].last_update_ms < 500) && !is_zero(sensors[i].pressure); } for (uint8_t i=0; i<_num_sensors; i++) { if (sensors[i].healthy) { // update altitude calculation if (is_zero(sensors[i].ground_pressure)) { sensors[i].ground_pressure = sensors[i].pressure; } sensors[i].altitude = get_altitude_difference(sensors[i].ground_pressure, sensors[i].pressure); // sanity check altitude sensors[i].alt_ok = !(isnan(sensors[i].altitude) || isinf(sensors[i].altitude)); } } // choose primary sensor _primary = 0; for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { _primary = i; break; } } // ensure the climb rate filter is updated _climb_rate_filter.update(get_altitude(), get_last_update()); } /* call accululate on all drivers */ void AP_Baro::accumulate(void) { for (uint8_t i=0; i<_num_drivers; i++) { drivers[i]->accumulate(); } } /* register a new sensor, claiming a sensor slot. If we are out of slots it will panic */ uint8_t AP_Baro::register_sensor(void) { if (_num_sensors >= BARO_MAX_INSTANCES) { hal.scheduler->panic(PSTR("Too many barometers")); } return _num_sensors++; } /* check if all barometers are healthy */ bool AP_Baro::all_healthy(void) const { for (uint8_t i=0; i<_num_sensors; i++) { if (!healthy(i)) { return false; } } return _num_sensors > 0; }