/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define ARM_DELAY 20 // called at 10hz so 2 seconds #define DISARM_DELAY 20 // called at 10hz so 2 seconds #define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds #define AUTO_DISARMING_DELAY 25 // called at 1hz so 25 seconds // arm_motors_check - checks for pilot input to arm or disarm the copter // called at 10hz static void arm_motors_check() { static int16_t arming_counter; // ensure throttle is down if (g.rc_3.control_in > 0) { arming_counter = 0; return; } // ensure we are in Stabilize, Acro or TOY mode if ((control_mode > ACRO) && ((control_mode != TOY_A) && (control_mode != TOY_M))) { arming_counter = 0; return; } #if FRAME_CONFIG == HELI_FRAME if ((motors.rsc_mode > 0) && (g.rc_8.control_in >= 10)){ arming_counter = 0; return; } #endif // HELI_FRAME #if TOY_EDF == ENABLED int16_t tmp = g.rc_1.control_in; #else int16_t tmp = g.rc_4.control_in; #endif // full right if (tmp > 4000) { // increase the arming counter to a maximum of 1 beyond the auto trim counter if( arming_counter <= AUTO_TRIM_DELAY ) { arming_counter++; } // arm the motors and configure for flight if (arming_counter == ARM_DELAY && !motors.armed()) { // run pre-arm-checks and display failures pre_arm_checks(true); if(ap.pre_arm_check) { init_arm_motors(); }else{ // reset arming counter if pre-arm checks fail arming_counter = 0; } } // arm the motors and configure for flight if (arming_counter == AUTO_TRIM_DELAY && motors.armed()) { auto_trim_counter = 250; } // full left }else if (tmp < -4000) { // increase the counter to a maximum of 1 beyond the disarm delay if( arming_counter <= DISARM_DELAY ) { arming_counter++; } // disarm the motors if (arming_counter == DISARM_DELAY && motors.armed()) { init_disarm_motors(); } // Yaw is centered so reset arming counter }else{ arming_counter = 0; } } // auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 25 seconds // called at 1hz static void auto_disarm_check() { static uint8_t auto_disarming_counter; if((control_mode <= ACRO) && (g.rc_3.control_in == 0) && motors.armed()) { auto_disarming_counter++; if(auto_disarming_counter == AUTO_DISARMING_DELAY) { init_disarm_motors(); }else if (auto_disarming_counter > AUTO_DISARMING_DELAY) { auto_disarming_counter = AUTO_DISARMING_DELAY + 1; } }else{ auto_disarming_counter = 0; } } // init_arm_motors - performs arming process including initialisation of barometer and gyros static void init_arm_motors() { // arming marker // Flag used to track if we have armed the motors the first time. // This is used to decide if we should run the ground_start routine // which calibrates the IMU static bool did_ground_start = false; // disable cpu failsafe because initialising everything takes a while failsafe_disable(); #if LOGGING_ENABLED == ENABLED // start dataflash start_logging(); #endif #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); #endif // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we arm // the motors hal.uartA->set_blocking_writes(false); if (gcs3.initialised) { hal.uartC->set_blocking_writes(false); } #if COPTER_LEDS == ENABLED piezo_beep_twice(); #endif // Remember Orientation // -------------------- init_simple_bearing(); initial_armed_bearing = ahrs.yaw_sensor; // Reset home position // ------------------- if(ap.home_is_set) init_home(); // all I terms are invalid // ----------------------- reset_I_all(); if(did_ground_start == false) { did_ground_start = true; startup_ground(); } #if HIL_MODE != HIL_MODE_ATTITUDE // read Baro pressure at ground - // this resets Baro for more accuracy //----------------------------------- init_barometer(); #endif // go back to normal AHRS gains ahrs.set_fast_gains(false); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.set_fast_gains(false); #endif // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); // set hover throttle motors.set_mid_throttle(g.throttle_mid); // update leds on board update_arming_light(); #if COPTER_LEDS == ENABLED piezo_beep_twice(); #endif // enable output to motors output_min(); // finally actually arm the motors motors.armed(true); // log arming to dataflash Log_Write_Event(DATA_ARMED); // reenable failsafe failsafe_enable(); } // perform pre-arm checks and set ap.pre_arm_check flag static void pre_arm_checks(bool display_failure) { // exit immediately if we've already successfully performed the pre-arm check if( ap.pre_arm_check ) { return; } // succeed if pre arm checks are disabled if(!g.arming_check_enabled) { ap.pre_arm_check = true; return; } // pre-arm rc checks a prerequisite pre_arm_rc_checks(); if(!ap.pre_arm_rc_check) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated")); } return; } // check accelerometers have been calibrated if(!ins.calibrated()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated")); } return; } // check the compass is healthy if(!compass.healthy) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy")); } return; } // check compass learning is on or offsets have been set Vector3f offsets = compass.get_offsets(); if(!compass._learn && offsets.length() == 0) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated")); } return; } // check for unreasonable compass offsets if(offsets.length() > 500) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high")); } return; } // check for unreasonable mag field length float mag_field = pythagorous3(compass.mag_x, compass.mag_y, compass.mag_z); if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.5 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.5) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field")); } return; } // barometer health check if(!barometer.healthy) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy")); } return; } #if AC_FENCE == ENABLED // check fence is initialised if(!fence.pre_arm_check()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: No GPS Lock")); } return; } #endif #if CONFIG_HAL_BOARD != HAL_BOARD_PX4 // check board voltage if(board_voltage() < BOARD_VOLTAGE_MIN || board_voltage() > BOARD_VOLTAGE_MAX) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage")); } return; } #endif // if we've gotten this far then pre arm checks have completed ap.pre_arm_check = true; } // perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag static void pre_arm_rc_checks() { // exit immediately if we've already successfully performed the pre-arm rc check if( ap.pre_arm_rc_check ) { return; } // check if radio has been calibrated if(!g.rc_3.radio_min.load()) { return; } // check if throttle min is reasonable if(g.rc_3.radio_min > 1300) { return; } // if we've gotten this far rc is ok ap.pre_arm_rc_check = true; } static void init_disarm_motors() { #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); #endif motors.armed(false); compass.save_offsets(); g.throttle_cruise.save(); // we are not in the air set_takeoff_complete(false); #if COPTER_LEDS == ENABLED piezo_beep(); #endif // setup fast AHRS gains to get right attitude ahrs.set_fast_gains(true); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.set_fast_gains(true); #endif // log disarm to the dataflash Log_Write_Event(DATA_DISARMED); // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos_4() { #if FRAME_CONFIG == TRI_FRAME // To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors g.rc_3.servo_out = min(g.rc_3.servo_out, 800); #endif motors.output(); }