/* www.ArduCopter.com - www.DIYDrones.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. File : Sensors.pde Version : v1.0, Aug 27, 2010 Author(s): ArduCopter Team Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, Jani Hirvinen, Ken McEwans, Roberto Navoni, Sandro Benigno, Chris Anderson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * ************************************************************** */ /* ******* ADC functions ********************* */ // Read all the ADC channles void Read_adc_raw(void) { //int temp; for (int i=0;i<6;i++) AN[i] = adc.Ch(sensors[i]); } // Returns an analog value with the offset int read_adc(int select) { if (SENSOR_SIGN[select]<0) return (AN_OFFSET[select]-AN[select]); else return (AN[select]-AN_OFFSET[select]); } void calibrateSensors(void) { int i; int j = 0; byte gyro; float aux_float[3]; Read_adc_raw(); // Read sensors data delay(5); // Offset values for accels and gyros... AN_OFFSET[3] = acc_offset_x; // Accel offset values are taken from external calibration (In Configurator) AN_OFFSET[4] = acc_offset_y; AN_OFFSET[5] = acc_offset_z; aux_float[0] = gyro_offset_roll; aux_float[1] = gyro_offset_pitch; aux_float[2] = gyro_offset_yaw; // Take the gyro offset values for(i=0;i<600;i++) { Read_adc_raw(); // Read sensors for(gyro = GYROZ; gyro <= GYROY; gyro++) aux_float[gyro] = aux_float[gyro] * 0.8 + AN[gyro] * 0.2; // Filtering Log_Write_Sensor(AN[0], AN[1], AN[2], AN[3], AN[4], AN[5], 0); delay(5); RunningLights(j); // (in Functions.pde) // Runnings lights effect to let user know that we are taking mesurements if((i % 5) == 0) j++; if(j >= 3) j = 0; } // Switch off all ABC lights LightsOff(); for(gyro = GYROZ; gyro <= GYROY; gyro++) AN_OFFSET[gyro] = aux_float[gyro]; // Update sensor OFFSETs from values read } #ifdef UseBMP void read_baro(void) { float tempPresAlt; tempPresAlt = float(APM_BMP085.Press)/101325.0; //tempPresAlt = pow(tempPresAlt, 0.190284); //press_alt = (1.0 - tempPresAlt) * 145366.45; tempPresAlt = pow(tempPresAlt, 0.190295); if (press_alt == 0) press_alt = (1.0 - tempPresAlt) * 4433000; // Altitude in cm else press_alt = press_alt * 0.75 + ((1.0 - tempPresAlt) * 4433000)*0.25; // Altitude in cm (filtered) } #endif #ifdef IsRANGEFINDER /* This function reads in the values from the attached range finders (currently only downward pointing sonar) */ void read_RF_Sensors() { // AP_RangeFinder_frontRight.read(); // AP_RangeFinder_backRight.read(); // AP_RangeFinder_backLeft.read(); // AP_RangeFinder_frontLeft.read(); // calculate altitude from down sensor AP_RangeFinder_down.read(); if( AP_RangeFinder_down.distance < AP_RangeFinder_down.min_distance || AP_RangeFinder_down.distance >= AP_RangeFinder_down.max_distance * 0.8 ) { sonar_altitude_valid = 0; press_alt = 0; }else{ sonar_altitude_valid = 1; press_alt = DCM_Matrix[2][2] * AP_RangeFinder_down.distance; } #if LOG_RANGEFINDER //Log_Write_RangeFinder(AP_RangeFinder_frontRight.distance, AP_RangeFinder_backRight.distance, AP_RangeFinder_backLeft.distance,AP_RangeFinder_frontLeft.distance,AP_RangeFinder_down.distance,0); #endif } #endif