#include "Copter.h" #if MODE_RTL_ENABLED == ENABLED /* * Init and run calls for RTL flight mode * * There are two parts to RTL, the high level decision making which controls which state we are in * and the lower implementation of the waypoint or landing controllers within those states */ // rtl_init - initialise rtl controller bool ModeRTL::init(bool ignore_checks) { if (!ignore_checks) { if (!AP::ahrs().home_is_set()) { return false; } } // initialise waypoint and spline controller wp_nav->wp_and_spline_init(g.rtl_speed_cms); _state = SubMode::STARTING; _state_complete = true; // see run() method below terrain_following_allowed = !copter.failsafe.terrain; return true; } // re-start RTL with terrain following disabled void ModeRTL::restart_without_terrain() { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RESTARTED_RTL); terrain_following_allowed = false; _state = SubMode::STARTING; _state_complete = true; gcs().send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing"); } ModeRTL::RTLAltType ModeRTL::get_alt_type() const { // sanity check parameter if (g.rtl_alt_type < 0 || g.rtl_alt_type > (int)RTLAltType::RTL_ALTTYPE_TERRAIN) { return RTLAltType::RTL_ALTTYPE_RELATIVE; } return (RTLAltType)g.rtl_alt_type.get(); } // rtl_run - runs the return-to-launch controller // should be called at 100hz or more void ModeRTL::run(bool disarm_on_land) { if (!motors->armed()) { return; } // check if we need to move to next state if (_state_complete) { switch (_state) { case SubMode::STARTING: build_path(); climb_start(); break; case SubMode::INITIAL_CLIMB: return_start(); break; case SubMode::RETURN_HOME: loiterathome_start(); break; case SubMode::LOITER_AT_HOME: if (rtl_path.land || copter.failsafe.radio) { land_start(); }else{ descent_start(); } break; case SubMode::FINAL_DESCENT: // do nothing break; case SubMode::LAND: // do nothing - rtl_land_run will take care of disarming motors break; } } // call the correct run function switch (_state) { case SubMode::STARTING: // should not be reached: _state = SubMode::INITIAL_CLIMB; FALLTHROUGH; case SubMode::INITIAL_CLIMB: climb_return_run(); break; case SubMode::RETURN_HOME: climb_return_run(); break; case SubMode::LOITER_AT_HOME: loiterathome_run(); break; case SubMode::FINAL_DESCENT: descent_run(); break; case SubMode::LAND: land_run(disarm_on_land); break; } } // rtl_climb_start - initialise climb to RTL altitude void ModeRTL::climb_start() { _state = SubMode::INITIAL_CLIMB; _state_complete = false; // set the destination if (!wp_nav->set_wp_destination_loc(rtl_path.climb_target) || !wp_nav->set_wp_destination_next_loc(rtl_path.return_target)) { // this should not happen because rtl_build_path will have checked terrain data was available gcs().send_text(MAV_SEVERITY_CRITICAL,"RTL: unexpected error setting climb target"); AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION); copter.set_mode(Mode::Number::LAND, ModeReason::TERRAIN_FAILSAFE); return; } // hold current yaw during initial climb auto_yaw.set_mode(AUTO_YAW_HOLD); } // rtl_return_start - initialise return to home void ModeRTL::return_start() { _state = SubMode::RETURN_HOME; _state_complete = false; if (!wp_nav->set_wp_destination_loc(rtl_path.return_target)) { // failure must be caused by missing terrain data, restart RTL restart_without_terrain(); } // initialise yaw to point home (maybe) auto_yaw.set_mode_to_default(true); } // rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller // called by rtl_run at 100hz or more void ModeRTL::climb_return_run() { // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller copter.failsafe_terrain_set_status(wp_nav->update_wpnav()); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw()); } // check if we've completed this stage of RTL _state_complete = wp_nav->reached_wp_destination(); } // loiterathome_start - initialise return to home void ModeRTL::loiterathome_start() { _state = SubMode::LOITER_AT_HOME; _state_complete = false; _loiter_start_time = millis(); // yaw back to initial take-off heading yaw unless pilot has already overridden yaw if (auto_yaw.default_mode(true) != AUTO_YAW_HOLD) { auto_yaw.set_mode(AUTO_YAW_RESETTOARMEDYAW); } else { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller // called by rtl_run at 100hz or more void ModeRTL::loiterathome_run() { // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller copter.failsafe_terrain_set_status(wp_nav->update_wpnav()); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw()); } // check if we've completed this stage of RTL if ((millis() - _loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) { if (auto_yaw.mode() == AUTO_YAW_RESETTOARMEDYAW) { // check if heading is within 2 degrees of heading when vehicle was armed if (abs(wrap_180_cd(ahrs.yaw_sensor-copter.initial_armed_bearing)) <= 200) { _state_complete = true; } } else { // we have loitered long enough _state_complete = true; } } } // rtl_descent_start - initialise descent to final alt void ModeRTL::descent_start() { _state = SubMode::FINAL_DESCENT; _state_complete = false; // Set wp navigation target to above home loiter_nav->init_target(wp_nav->get_wp_destination().xy()); // initialise altitude target to stopping point pos_control->init_z_controller_stopping_point(); // initialise yaw auto_yaw.set_mode(AUTO_YAW_HOLD); #if LANDING_GEAR_ENABLED == ENABLED // optionally deploy landing gear copter.landinggear.deploy_for_landing(); #endif #if AC_FENCE == ENABLED // disable the fence on landing copter.fence.auto_disable_fence_for_landing(); #endif } // rtl_descent_run - implements the final descent to the RTL_ALT // called by rtl_run at 100hz or more void ModeRTL::descent_run() { float target_roll = 0.0f; float target_pitch = 0.0f; float target_yaw_rate = 0.0f; // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); return; } // process pilot's input if (!copter.failsafe.radio) { if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){ AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT); // exit land if throttle is high if (!copter.set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) { copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE); } } if (g.land_repositioning) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); // record if pilot has overridden roll or pitch if (!is_zero(target_roll) || !is_zero(target_pitch)) { if (!copter.ap.land_repo_active) { AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE); } copter.ap.land_repo_active = true; } } if (g.land_repositioning || use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // process roll, pitch inputs loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch); // run loiter controller loiter_nav->update(); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt); pos_control->update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate); // check if we've reached within 20cm of final altitude _state_complete = labs(rtl_path.descent_target.alt - copter.current_loc.alt) < 20; } // land_start - initialise controllers to loiter over home void ModeRTL::land_start() { _state = SubMode::LAND; _state_complete = false; // Set wp navigation target to above home loiter_nav->init_target(wp_nav->get_wp_destination().xy()); // initialise the vertical position controller if (!pos_control->is_active_z()) { pos_control->init_z_controller(); } // initialise yaw auto_yaw.set_mode(AUTO_YAW_HOLD); #if LANDING_GEAR_ENABLED == ENABLED // optionally deploy landing gear copter.landinggear.deploy_for_landing(); #endif #if AC_FENCE == ENABLED // disable the fence on landing copter.fence.auto_disable_fence_for_landing(); #endif } bool ModeRTL::is_landing() const { return _state == SubMode::LAND; } // land_run - run the landing controllers to put the aircraft on the ground // called by rtl_run at 100hz or more void ModeRTL::land_run(bool disarm_on_land) { // check if we've completed this stage of RTL _state_complete = copter.ap.land_complete; // disarm when the landing detector says we've landed if (disarm_on_land && copter.ap.land_complete && motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) { copter.arming.disarm(AP_Arming::Method::LANDED); } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { make_safe_spool_down(); loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); land_run_horizontal_control(); land_run_vertical_control(); } void ModeRTL::build_path() { // origin point is our stopping point Vector3p stopping_point; pos_control->get_stopping_point_xy_cm(stopping_point.xy()); pos_control->get_stopping_point_z_cm(stopping_point.z); rtl_path.origin_point = Location(stopping_point.tofloat(), Location::AltFrame::ABOVE_ORIGIN); rtl_path.origin_point.change_alt_frame(Location::AltFrame::ABOVE_HOME); // compute return target compute_return_target(); // climb target is above our origin point at the return altitude rtl_path.climb_target = Location(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame()); // descent target is below return target at rtl_alt_final rtl_path.descent_target = Location(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location::AltFrame::ABOVE_HOME); // set land flag rtl_path.land = g.rtl_alt_final <= 0; } // compute the return target - home or rally point // return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set) void ModeRTL::compute_return_target() { // set return target to nearest rally point or home position (Note: alt is absolute) #if AC_RALLY == ENABLED rtl_path.return_target = copter.rally.calc_best_rally_or_home_location(copter.current_loc, ahrs.get_home().alt); #else rtl_path.return_target = ahrs.get_home(); #endif // curr_alt is current altitude above home or above terrain depending upon use_terrain int32_t curr_alt = copter.current_loc.alt; // determine altitude type of return journey (alt-above-home, alt-above-terrain using range finder or alt-above-terrain using terrain database) ReturnTargetAltType alt_type = ReturnTargetAltType::RELATIVE; if (terrain_following_allowed && (get_alt_type() == RTLAltType::RTL_ALTTYPE_TERRAIN)) { // convert RTL_ALT_TYPE and WPNAV_RFNG_USE parameters to ReturnTargetAltType switch (wp_nav->get_terrain_source()) { case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE: alt_type = ReturnTargetAltType::RELATIVE; AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND); gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home"); break; case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER: alt_type = ReturnTargetAltType::RANGEFINDER; break; case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE: alt_type = ReturnTargetAltType::TERRAINDATABASE; break; } } // set curr_alt and return_target.alt from range finder if (alt_type == ReturnTargetAltType::RANGEFINDER) { if (copter.get_rangefinder_height_interpolated_cm(curr_alt)) { // set return_target.alt rtl_path.return_target.set_alt_cm(MAX(curr_alt + MAX(0, g.rtl_climb_min), MAX(g.rtl_altitude, RTL_ALT_MIN)), Location::AltFrame::ABOVE_TERRAIN); } else { // fallback to relative alt and warn user alt_type = ReturnTargetAltType::RELATIVE; gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: rangefinder unhealthy, using alt-above-home"); AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND); } } // set curr_alt and return_target.alt from terrain database if (alt_type == ReturnTargetAltType::TERRAINDATABASE) { // set curr_alt to current altitude above terrain // convert return_target.alt from an abs (above MSL) to altitude above terrain // Note: the return_target may be a rally point with the alt set above the terrain alt (like the top of a building) int32_t curr_terr_alt; if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, curr_terr_alt) && rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_TERRAIN)) { curr_alt = curr_terr_alt; } else { // fallback to relative alt and warn user alt_type = ReturnTargetAltType::RELATIVE; AP::logger().Write_Error(LogErrorSubsystem::TERRAIN, LogErrorCode::MISSING_TERRAIN_DATA); gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home"); } } // for the default case we must convert return-target alt (which is an absolute alt) to alt-above-home if (alt_type == ReturnTargetAltType::RELATIVE) { if (!rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_HOME)) { // this should never happen but just in case rtl_path.return_target.set_alt_cm(0, Location::AltFrame::ABOVE_HOME); gcs().send_text(MAV_SEVERITY_WARNING, "RTL: unexpected error calculating target alt"); } } // set new target altitude to return target altitude // Note: this is alt-above-home or terrain-alt depending upon rtl_alt_type // Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home int32_t target_alt = MAX(rtl_path.return_target.alt, 0); // increase target to maximum of current altitude + climb_min and rtl altitude target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min)); target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN)); // reduce climb if close to return target float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f; // don't allow really shallow slopes if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) { target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB))); } // set returned target alt to new target_alt (don't change altitude type) rtl_path.return_target.set_alt_cm(target_alt, (alt_type == ReturnTargetAltType::RELATIVE) ? Location::AltFrame::ABOVE_HOME : Location::AltFrame::ABOVE_TERRAIN); #if AC_FENCE == ENABLED // ensure not above fence altitude if alt fence is enabled // Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude, // if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to // the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better // to apply the fence alt limit independently on the origin_point and return_target if ((copter.fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) { // get return target as alt-above-home so it can be compared to fence's alt if (rtl_path.return_target.get_alt_cm(Location::AltFrame::ABOVE_HOME, target_alt)) { float fence_alt = copter.fence.get_safe_alt_max()*100.0f; if (target_alt > fence_alt) { // reduce target alt to the fence alt rtl_path.return_target.alt -= (target_alt - fence_alt); } } } #endif // ensure we do not descend rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt); } bool ModeRTL::get_wp(Location& destination) const { // provide target in states which use wp_nav switch (_state) { case SubMode::STARTING: case SubMode::INITIAL_CLIMB: case SubMode::RETURN_HOME: case SubMode::LOITER_AT_HOME: case SubMode::FINAL_DESCENT: return wp_nav->get_oa_wp_destination(destination); case SubMode::LAND: return false; } // we should never get here but just in case return false; } uint32_t ModeRTL::wp_distance() const { return wp_nav->get_wp_distance_to_destination(); } int32_t ModeRTL::wp_bearing() const { return wp_nav->get_wp_bearing_to_destination(); } // returns true if pilot's yaw input should be used to adjust vehicle's heading bool ModeRTL::use_pilot_yaw(void) const { return (copter.g2.rtl_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0; } #endif