/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "Parameters.h" #include "VehicleType.h" #include "MsgHandler.h" #ifndef INT16_MIN #define INT16_MIN -32768 #define INT16_MAX 32767 #endif #include "LogReader.h" #include "DataFlashFileReader.h" #include "Replay.h" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif #define streq(x, y) (!strcmp(x, y)) const AP_HAL::HAL& hal = AP_HAL::get_HAL(); ReplayVehicle replayvehicle; struct globals globals; #define GSCALAR(v, name, def) { replayvehicle.g.v.vtype, name, Parameters::k_param_ ## v, &replayvehicle.g.v, {def_value : def} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replayvehicle.v, {group_info : class::var_info} } #define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replayvehicle.v, {group_info : class::var_info} } const AP_Param::Info ReplayVehicle::var_info[] = { GSCALAR(dummy, "_DUMMY", 0), // barometer ground calibration. The GND_ prefix is chosen for // compatibility with previous releases of ArduPlane // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS_", AP_InertialSensor), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), // @Group: ARSPD_ // @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp GOBJECT(airspeed, "ARSPD_", AP_Airspeed), // @Group: EK2_ // @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp GOBJECTN(EKF2, NavEKF2, "EK2_", NavEKF2), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/AP_Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: LOG // @Path: ../libraries/DataFlash/DataFlash.cpp GOBJECT(dataflash, "LOG", DataFlash_Class), // @Group: EK3_ // @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp GOBJECTN(EKF3, NavEKF3, "EK3_", NavEKF3), AP_VAREND }; void ReplayVehicle::load_parameters(void) { unlink("Replay.stg"); if (!AP_Param::check_var_info()) { AP_HAL::panic("Bad parameter table"); } AP_Param::set_default_by_name("EK2_ENABLE", 1); AP_Param::set_default_by_name("EK2_IMU_MASK", 1); AP_Param::set_default_by_name("EK3_ENABLE", 1); AP_Param::set_default_by_name("EK3_IMU_MASK", 1); AP_Param::set_default_by_name("LOG_REPLAY", 1); AP_Param::set_default_by_name("AHRS_EKF_TYPE", 2); AP_Param::set_default_by_name("LOG_FILE_BUFSIZE", 60); } static const struct LogStructure min_log_structure[] = { { LOG_FORMAT_MSG, sizeof(log_Format), "FMT", "BBnNZ", "Type,Length,Name,Format,Columns" }, { LOG_PARAMETER_MSG, sizeof(log_Parameter), "PARM", "QNf", "TimeUS,Name,Value" }, { LOG_MESSAGE_MSG, sizeof(log_Message), "MSG", "QZ", "TimeUS,Message"}, }; void ReplayVehicle::setup(void) { load_parameters(); // we pass a minimal log structure, as we will be outputting the // log structures we need manually, to prevent FMT duplicates dataflash.Init(min_log_structure, ARRAY_SIZE(min_log_structure)); ahrs.set_compass(&compass); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_correct_centrifugal(true); ahrs.set_ekf_use(true); EKF2.set_enable(true); EKF3.set_enable(true); printf("Starting disarmed\n"); hal.util->set_soft_armed(false); barometer.init(); barometer.setHIL(0); barometer.update(); compass.init(); ins.set_hil_mode(); } Replay replay(replayvehicle); void Replay::usage(void) { ::printf("Options:\n"); ::printf("\t--parm NAME=VALUE set parameter NAME to VALUE\n"); ::printf("\t--accel-mask MASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n"); ::printf("\t--gyro-mask MASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n"); ::printf("\t--arm-time time arm at time (milliseconds)\n"); ::printf("\t--no-imt don't use IMT data\n"); ::printf("\t--check-generate generate CHEK messages in output\n"); ::printf("\t--check check solution against CHEK messages\n"); ::printf("\t--tolerance-euler tolerance for euler angles in degrees\n"); ::printf("\t--tolerance-pos tolerance for position in meters\n"); ::printf("\t--tolerance-vel tolerance for velocity in meters/second\n"); ::printf("\t--nottypes list of msg types not to output, comma separated\n"); ::printf("\t--downsample downsampling rate for output\n"); ::printf("\t--logmatch match logging rate to source\n"); ::printf("\t--no-params don't use parameters from the log\n"); ::printf("\t--no-fpe do not generate floating point exceptions\n"); } enum { OPT_CHECK = 128, OPT_CHECK_GENERATE, OPT_TOLERANCE_EULER, OPT_TOLERANCE_POS, OPT_TOLERANCE_VEL, OPT_NOTTYPES, OPT_DOWNSAMPLE, OPT_LOGMATCH, OPT_NOPARAMS, OPT_PARAM_FILE, OPT_NO_FPE, }; void Replay::flush_dataflash(void) { _vehicle.dataflash.flush(); } /* create a list from a comma separated string */ const char **Replay::parse_list_from_string(const char *str_in) { uint16_t comma_count=0; const char *p; for (p=str_in; *p; p++) { if (*p == ',') comma_count++; } char *str = strdup(str_in); if (str == NULL) { return NULL; } const char **ret = (const char **)calloc(comma_count+2, sizeof(char *)); if (ret == NULL) { free(str); return NULL; } char *saveptr = NULL; uint16_t idx = 0; for (p=strtok_r(str, ",", &saveptr); p; p=strtok_r(NULL, ",", &saveptr)) { ret[idx++] = p; } return ret; } void Replay::_parse_command_line(uint8_t argc, char * const argv[]) { const struct GetOptLong::option options[] = { // name has_arg flag val {"parm", true, 0, 'p'}, {"param", true, 0, 'p'}, {"param-file", true, 0, OPT_PARAM_FILE}, {"help", false, 0, 'h'}, {"accel-mask", true, 0, 'a'}, {"gyro-mask", true, 0, 'g'}, {"arm-time", true, 0, 'A'}, {"no-imt", false, 0, 'n'}, {"check-generate", false, 0, OPT_CHECK_GENERATE}, {"check", false, 0, OPT_CHECK}, {"tolerance-euler", true, 0, OPT_TOLERANCE_EULER}, {"tolerance-pos", true, 0, OPT_TOLERANCE_POS}, {"tolerance-vel", true, 0, OPT_TOLERANCE_VEL}, {"nottypes", true, 0, OPT_NOTTYPES}, {"downsample", true, 0, OPT_DOWNSAMPLE}, {"logmatch", false, 0, OPT_LOGMATCH}, {"no-params", false, 0, OPT_NOPARAMS}, {"no-fpe", false, 0, OPT_NO_FPE}, {0, false, 0, 0} }; GetOptLong gopt(argc, argv, "r:p:ha:g:A:", options); int opt; while ((opt = gopt.getoption()) != -1) { switch (opt) { case 'g': logreader.set_gyro_mask(strtol(gopt.optarg, NULL, 0)); break; case 'a': logreader.set_accel_mask(strtol(gopt.optarg, NULL, 0)); break; case 'A': arm_time_ms = strtol(gopt.optarg, NULL, 0); break; case 'n': use_imt = false; logreader.set_use_imt(use_imt); break; case 'p': { const char *eq = strchr(gopt.optarg, '='); if (eq == NULL) { ::printf("Usage: -p NAME=VALUE\n"); exit(1); } struct user_parameter *u = new user_parameter; strncpy(u->name, gopt.optarg, eq-gopt.optarg); u->value = atof(eq+1); u->next = user_parameters; user_parameters = u; break; } case OPT_CHECK_GENERATE: check_generate = true; break; case OPT_CHECK: check_solution = true; break; case OPT_TOLERANCE_EULER: tolerance_euler = atof(gopt.optarg); break; case OPT_TOLERANCE_POS: tolerance_pos = atof(gopt.optarg); break; case OPT_TOLERANCE_VEL: tolerance_vel = atof(gopt.optarg); break; case OPT_NOTTYPES: nottypes = parse_list_from_string(gopt.optarg); break; case OPT_DOWNSAMPLE: downsample = atoi(gopt.optarg); break; case OPT_LOGMATCH: logmatch = true; break; case OPT_NOPARAMS: globals.no_params = true; break; case OPT_PARAM_FILE: load_param_file(gopt.optarg); break; case OPT_NO_FPE: generate_fpe = false; break; case 'h': default: usage(); exit(0); } } argv += gopt.optind; argc -= gopt.optind; if (argc > 0) { filename = argv[0]; } } class IMUCounter : public DataFlashFileReader { public: IMUCounter() {} bool handle_log_format_msg(const struct log_Format &f); bool handle_msg(const struct log_Format &f, uint8_t *msg); uint64_t last_clock_timestamp = 0; float last_parm_value = 0; char last_parm_name[17] {}; private: MsgHandler *handler = nullptr; MsgHandler *parm_handler = nullptr; }; bool IMUCounter::handle_log_format_msg(const struct log_Format &f) { if (!strncmp(f.name,"IMU",4) || !strncmp(f.name,"IMT",4)) { // an IMU or IMT message message format handler = new MsgHandler(f); } if (strncmp(f.name,"PARM",4) == 0) { // PARM message message format parm_handler = new MsgHandler(f); } return true; }; bool IMUCounter::handle_msg(const struct log_Format &f, uint8_t *msg) { if (strncmp(f.name,"PARM",4) == 0) { // gather parameter values to check for SCHED_LOOP_RATE parm_handler->field_value(msg, "Name", last_parm_name, sizeof(last_parm_name)); parm_handler->field_value(msg, "Value", last_parm_value); return true; } if (strncmp(f.name,"IMU",4) && strncmp(f.name,"IMT",4)) { // not an IMU message return true; } if (handler->field_value(msg, "TimeUS", last_clock_timestamp)) { } else if (handler->field_value(msg, "TimeMS", last_clock_timestamp)) { last_clock_timestamp *= 1000; } else { ::printf("Unable to find timestamp in message"); } return true; } /* find information about the log */ bool Replay::find_log_info(struct log_information &info) { IMUCounter reader; if (!reader.open_log(filename)) { perror(filename); exit(1); } char clock_source[5] = { }; int samplecount = 0; uint64_t prev = 0; uint64_t smallest_delta = 0; uint64_t total_delta = 0; prev = 0; const uint16_t samples_required = 1000; while (samplecount < samples_required) { char type[5]; if (!reader.update(type)) { break; } if (streq(type, "PARM") && streq(reader.last_parm_name, "SCHED_LOOP_RATE")) { // get rate directly from parameters info.update_rate = reader.last_parm_value; } if (strlen(clock_source) == 0) { // If you want to add a clock source, also add it to // handle_msg and handle_log_format_msg, above. Note that // ordering is important here. For example, when we log // IMT we may reduce the logging speed of IMU, so then // using IMU as your clock source will lead to incorrect // behaviour. if (streq(type, "IMT")) { strcpy(clock_source, "IMT"); } else if (streq(type, "IMU")) { strcpy(clock_source, "IMU"); } else { continue; } hal.console->printf("Using clock source %s\n", clock_source); } // IMT if available always overrides if (streq(type, "IMT") && strcmp(clock_source, "IMT") != 0) { strcpy(clock_source, "IMT"); hal.console->printf("Changing clock source to %s\n", clock_source); samplecount = 0; prev = 0; smallest_delta = 0; total_delta = 0; } if (streq(type, clock_source)) { if (prev == 0) { prev = reader.last_clock_timestamp; } else { uint64_t delta = reader.last_clock_timestamp - prev; if (delta < 40000 && delta > 1000) { if (smallest_delta == 0 || delta < smallest_delta) { smallest_delta = delta; } samplecount++; total_delta += delta; } } prev = reader.last_clock_timestamp; } if (streq(type, "IMU2")) { info.have_imu2 = true; } if (streq(type, "IMT")) { info.have_imt = true; } if (streq(type, "IMT2")) { info.have_imt2 = true; } } if (smallest_delta == 0) { ::printf("Unable to determine log rate - insufficient IMU/IMT messages? (need=%d got=%d)", samples_required, samplecount); return false; } float average_delta = total_delta / samplecount; float rate = 1.0e6f/average_delta; printf("average_delta=%.2f smallest_delta=%lu samplecount=%lu\n", average_delta, (unsigned long)smallest_delta, (unsigned long)samplecount); if (rate < 100) { info.update_rate = 50; } else { info.update_rate = 400; } return true; } // catch floating point exceptions static void _replay_sig_fpe(int signum) { fprintf(stderr, "ERROR: Floating point exception - flushing dataflash...\n"); replay.flush_dataflash(); fprintf(stderr, "ERROR: ... and aborting.\n"); if (replay.check_solution) { FILE *f = fopen("replay_results.txt","a"); fprintf(f, "%s\tFPE\tFPE\tFPE\tFPE\tFPE\n", replay.log_filename); fclose(f); } abort(); } FILE *Replay::xfopen(const char *f, const char *mode) { FILE *ret = fopen(f, mode); if (ret == nullptr) { ::fprintf(stderr, "Failed to open (%s): %m\n", f); abort(); } return ret; } void Replay::setup() { ::printf("Starting\n"); uint8_t argc; char * const *argv; hal.util->commandline_arguments(argc, argv); _parse_command_line(argc, argv); if (!check_generate) { logreader.set_save_chek_messages(true); } set_signal_handlers(); hal.console->printf("Processing log %s\n", filename); // remember filename for reporting log_filename = filename; if (!find_log_info(log_info)) { printf("Update to get log information\n"); exit(1); } hal.console->printf("Using an update rate of %u Hz\n", log_info.update_rate); if (!logreader.open_log(filename)) { perror(filename); exit(1); } _vehicle.setup(); inhibit_gyro_cal(); if (log_info.update_rate == 400) { // assume copter for 400Hz _vehicle.ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); _vehicle.ahrs.set_fly_forward(false); } else if (log_info.update_rate == 50) { // assume copter for 400Hz _vehicle.ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); _vehicle.ahrs.set_fly_forward(true); } set_ins_update_rate(log_info.update_rate); } void Replay::set_ins_update_rate(uint16_t _update_rate) { _vehicle.ins.init(_update_rate); } void Replay::inhibit_gyro_cal() { // swiped from LR_MsgHandler.cpp; until we see PARM messages, we // don't have a PARM handler available to set parameters. enum ap_var_type var_type; AP_Param *vp = AP_Param::find("INS_GYR_CAL", &var_type); if (vp == NULL) { ::fprintf(stderr, "No GYR_CAL parameter found\n"); abort(); } ((AP_Float *)vp)->set(AP_InertialSensor::GYRO_CAL_NEVER); // logreader.set_parameter("GYR_CAL", AP_InertialSensor::GYRO_CAL_NEVER); } /* setup user -p parameters */ void Replay::set_user_parameters(void) { for (struct user_parameter *u=user_parameters; u; u=u->next) { if (!logreader.set_parameter(u->name, u->value)) { ::printf("Failed to set parameter %s to %f\n", u->name, u->value); exit(1); } } } void Replay::set_signal_handlers(void) { struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; if (generate_fpe) { // SITL_State::_parse_command_line sets up an FPE handler. We // can do better: feenableexcept(FE_INVALID | FE_OVERFLOW); sa.sa_handler = _replay_sig_fpe; } else { // disable floating point exception generation: int exceptions = FE_OVERFLOW | FE_DIVBYZERO; #ifndef __i386__ // i386 with gcc doesn't work with FE_INVALID exceptions |= FE_INVALID; #endif if (feclearexcept(exceptions)) { ::fprintf(stderr, "Failed to disable floating point exceptions: %s", strerror(errno)); } sa.sa_handler = SIG_IGN; } if (sigaction(SIGFPE, &sa, nullptr) < 0) { ::fprintf(stderr, "Failed to set floating point exceptions' handler: %s", strerror(errno)); } } /* write out EKF log messages */ void Replay::write_ekf_logs(void) { if (!LogReader::in_list("EKF", nottypes)) { _vehicle.dataflash.Log_Write_EKF(_vehicle.ahrs,false); } if (!LogReader::in_list("AHRS2", nottypes)) { _vehicle.dataflash.Log_Write_AHRS2(_vehicle.ahrs); } if (!LogReader::in_list("POS", nottypes)) { _vehicle.dataflash.Log_Write_POS(_vehicle.ahrs); } } void Replay::read_sensors(const char *type) { if (!done_parameters && !streq(type,"FMT") && !streq(type,"PARM")) { done_parameters = true; set_user_parameters(); } if (done_parameters && streq(type, "PARM")) { set_user_parameters(); } if (!done_home_init) { if (streq(type, "GPS") && (_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) && done_baro_init) { const Location &loc = _vehicle.gps.location(); ::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n", loc.lat * 1.0e-7f, loc.lng * 1.0e-7f, loc.alt * 0.01f, AP_HAL::millis()*0.001f); _vehicle.ahrs.set_home(loc); _vehicle.compass.set_initial_location(loc.lat, loc.lng); done_home_init = true; } } if (streq(type,"GPS")) { _vehicle.gps.update(); if (_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) { _vehicle.ahrs.estimate_wind(); } } else if (streq(type,"MAG")) { _vehicle.compass.read(); } else if (streq(type,"ARSP")) { _vehicle.ahrs.set_airspeed(&_vehicle.airspeed); } else if (streq(type,"BARO")) { _vehicle.barometer.update(); if (!done_baro_init) { done_baro_init = true; ::printf("Barometer initialised\n"); _vehicle.barometer.update_calibration(); } } bool run_ahrs = false; if (log_info.have_imt2) { run_ahrs = streq(type, "IMT2"); _vehicle.ahrs.force_ekf_start(); } else if (log_info.have_imt) { run_ahrs = streq(type, "IMT"); _vehicle.ahrs.force_ekf_start(); } else if (log_info.have_imu2) { run_ahrs = streq(type, "IMU2"); } else { run_ahrs = streq(type, "IMU"); } /* always run AHRS on CHECK messages when checking the solution */ if (check_solution) { run_ahrs = streq(type, "CHEK"); } if (run_ahrs) { _vehicle.ahrs.update(); if (_vehicle.ahrs.get_home().lat != 0) { _vehicle.inertial_nav.update(_vehicle.ins.get_delta_time()); } if ((downsample == 0 || ++output_counter % downsample == 0) && !logmatch) { write_ekf_logs(); } if (_vehicle.ahrs.healthy() != ahrs_healthy) { ahrs_healthy = _vehicle.ahrs.healthy(); printf("AHRS health: %u at %lu\n", (unsigned)ahrs_healthy, (unsigned long)AP_HAL::millis()); } if (check_generate) { log_check_generate(); } else if (check_solution) { log_check_solution(); } } if (logmatch && (streq(type, "NKF1") || streq(type, "XKF1"))) { write_ekf_logs(); } } /* copy current data to CHEK message */ void Replay::log_check_generate(void) { Vector3f euler; Vector3f velocity; Location loc {}; _vehicle.EKF2.getEulerAngles(-1,euler); _vehicle.EKF2.getVelNED(-1,velocity); _vehicle.EKF2.getLLH(loc); struct log_Chek packet = { LOG_PACKET_HEADER_INIT(LOG_CHEK_MSG), time_us : AP_HAL::micros64(), roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) lat : loc.lat, lng : loc.lng, alt : loc.alt*0.01f, vnorth : velocity.x, veast : velocity.y, vdown : velocity.z }; _vehicle.dataflash.WriteBlock(&packet, sizeof(packet)); } /* check current solution against CHEK message */ void Replay::log_check_solution(void) { const LR_MsgHandler::CheckState &check_state = logreader.get_check_state(); Vector3f euler; Vector3f velocity; Location loc {}; _vehicle.EKF2.getEulerAngles(-1,euler); _vehicle.EKF2.getVelNED(-1,velocity); _vehicle.EKF2.getLLH(loc); float roll_error = degrees(fabsf(euler.x - check_state.euler.x)); float pitch_error = degrees(fabsf(euler.y - check_state.euler.y)); float yaw_error = wrap_180_cd(100*degrees(fabsf(euler.z - check_state.euler.z)))*0.01f; float vel_error = (velocity - check_state.velocity).length(); float pos_error = get_distance(check_state.pos, loc); check_result.max_roll_error = MAX(check_result.max_roll_error, roll_error); check_result.max_pitch_error = MAX(check_result.max_pitch_error, pitch_error); check_result.max_yaw_error = MAX(check_result.max_yaw_error, yaw_error); check_result.max_vel_error = MAX(check_result.max_vel_error, vel_error); check_result.max_pos_error = MAX(check_result.max_pos_error, pos_error); } void Replay::flush_and_exit() { flush_dataflash(); if (check_solution) { report_checks(); } exit(0); } void Replay::loop() { char type[5]; if (arm_time_ms >= 0 && AP_HAL::millis() > (uint32_t)arm_time_ms) { if (!hal.util->get_soft_armed()) { hal.util->set_soft_armed(true); ::printf("Arming at %u ms\n", (unsigned)AP_HAL::millis()); } } if (!logreader.update(type)) { ::printf("End of log at %.1f seconds\n", AP_HAL::millis()*0.001f); flush_and_exit(); } if (last_timestamp != 0) { uint64_t gap = AP_HAL::micros64() - last_timestamp; if (gap > 40000) { ::printf("Gap in log at timestamp=%lu of length %luus\n", last_timestamp, gap); } } last_timestamp = AP_HAL::micros64(); read_sensors(type); if (!streq(type,"ATT")) { return; } } bool Replay::show_error(const char *text, float max_error, float tolerance) { bool failed = max_error > tolerance; printf("%s:\t%.2f %c %.2f\n", text, max_error, failed?'>':'<', tolerance); return failed; } /* report results of --check */ void Replay::report_checks(void) { bool failed = false; if (tolerance_euler < 0.01f) { tolerance_euler = 0.01f; } FILE *f = fopen("replay_results.txt","a"); if (f != NULL) { fprintf(f, "%s\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n", log_filename, check_result.max_roll_error, check_result.max_pitch_error, check_result.max_yaw_error, check_result.max_pos_error, check_result.max_vel_error); fclose(f); } failed |= show_error("Roll error", check_result.max_roll_error, tolerance_euler); failed |= show_error("Pitch error", check_result.max_pitch_error, tolerance_euler); failed |= show_error("Yaw error", check_result.max_yaw_error, tolerance_euler); failed |= show_error("Position error", check_result.max_pos_error, tolerance_pos); failed |= show_error("Velocity error", check_result.max_vel_error, tolerance_vel); if (failed) { printf("Checks failed\n"); exit(1); } else { printf("Checks passed\n"); } } /* parse a parameter file line */ bool Replay::parse_param_line(char *line, char **vname, float &value) { if (line[0] == '#') { return false; } char *saveptr = NULL; char *pname = strtok_r(line, ", =\t", &saveptr); if (pname == NULL) { return false; } if (strlen(pname) > AP_MAX_NAME_SIZE) { return false; } const char *value_s = strtok_r(NULL, ", =\t", &saveptr); if (value_s == NULL) { return false; } value = atof(value_s); *vname = pname; return true; } /* load a default set of parameters from a file */ void Replay::load_param_file(const char *pfilename) { FILE *f = fopen(pfilename, "r"); if (f == NULL) { printf("Failed to open parameter file: %s\n", pfilename); exit(1); } char line[100]; while (fgets(line, sizeof(line)-1, f)) { char *pname; float value; if (!parse_param_line(line, &pname, value)) { continue; } struct user_parameter *u = new user_parameter; strncpy(u->name, pname, sizeof(u->name)); u->value = value; u->next = user_parameters; user_parameters = u; } fclose(f); } /* see if a user parameter is set */ bool Replay::check_user_param(const char *name) { for (struct user_parameter *u=user_parameters; u; u=u->next) { if (strcmp(name, u->name) == 0) { return true; } } return false; } const struct AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { AP_GROUPEND }; GCS_Dummy _gcs; AP_HAL_MAIN_CALLBACKS(&replay);