/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* driver for trone rangefinder */ #include "AP_RangeFinder_trone.h" #include #include #include extern const AP_HAL::HAL& hal; #define TRONE_I2C_ADDR 0x30 // registers #define TRONE_MEASURE 0x00 #define TRONE_WHOAMI 0x01 #define TRONE_WHOAMI_VALUE 0xA1 /* The constructor also initializes the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_trone::AP_RangeFinder_trone(uint8_t bus, RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state) : AP_RangeFinder_Backend(_ranger, instance, _state, MAV_DISTANCE_SENSOR_LASER) , dev(hal.i2c_mgr->get_device(bus, TRONE_I2C_ADDR)) { } /* detect if a trone rangefinder is connected. We'll detect by trying to take a reading on I2C. If we get a result the sensor is there. */ AP_RangeFinder_Backend *AP_RangeFinder_trone::detect(uint8_t bus, RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state) { AP_RangeFinder_trone *sensor = new AP_RangeFinder_trone(bus, _ranger, instance, _state); if (!sensor) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } /* initialise sensor */ bool AP_RangeFinder_trone::init(void) { if (!dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return false; } dev->set_retries(10); // check WHOAMI uint8_t whoami; if (!dev->read_registers(TRONE_WHOAMI, &whoami, 1) || whoami != TRONE_WHOAMI_VALUE) { return false; } if (!measure()) { dev->get_semaphore()->give(); return false; } // give time for the sensor to process the request hal.scheduler->delay(70); uint16_t distance_cm; if (!collect(distance_cm)) { dev->get_semaphore()->give(); return false; } dev->get_semaphore()->give(); dev->set_retries(1); dev->register_periodic_callback(50000, FUNCTOR_BIND_MEMBER(&AP_RangeFinder_trone::timer, void)); return true; } // measure() - ask sensor to make a range reading bool AP_RangeFinder_trone::measure() { uint8_t cmd = TRONE_MEASURE; return dev->transfer(&cmd, 1, nullptr, 0); } // collect - return last value measured by sensor bool AP_RangeFinder_trone::collect(uint16_t &distance_cm) { uint8_t d[3]; // take range reading and read back results if (!dev->transfer(nullptr, 0, d, sizeof(d))) { return false; } if (d[2] != crc_crc8(d, 2)) { // bad CRC return false; } distance_cm = ((uint16_t(d[0]) << 8) | d[1]) / 10; return true; } /* timer called at 20Hz */ void AP_RangeFinder_trone::timer(void) { // take a reading uint16_t distance_cm; if (collect(distance_cm) && _sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { accum.sum += distance_cm; accum.count++; _sem->give(); } // and immediately ask for a new reading measure(); } /* update the state of the sensor */ void AP_RangeFinder_trone::update(void) { if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { if (accum.count > 0) { state.distance_cm = accum.sum / accum.count; accum.sum = 0; accum.count = 0; update_status(); } else { set_status(RangeFinder::RangeFinder_NoData); } _sem->give(); } }