/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* DataFlash logging - file oriented variant This uses posix file IO to create log files called logs/NN.bin in the given directory */ #include #if HAL_OS_POSIX_IO #include "DataFlash.h" #include #include #include #include #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; #define MAX_LOG_FILES 500U #define DATAFLASH_PAGE_SIZE 1024UL /* constructor */ DataFlash_File::DataFlash_File(const char *log_directory) : _write_fd(-1), _read_fd(-1), _read_offset(0), _write_offset(0), _initialised(false), _log_directory(log_directory), _writebuf(NULL), _writebuf_size(16*1024), #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 // V1 gets IO errors with larger than 512 byte writes _writebuf_chunk(512), #else _writebuf_chunk(4096), #endif _writebuf_head(0), _writebuf_tail(0), _last_write_time(0) #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 ,_perf_write(perf_alloc(PC_ELAPSED, "DF_write")), _perf_fsync(perf_alloc(PC_ELAPSED, "DF_fsync")), _perf_errors(perf_alloc(PC_COUNT, "DF_errors")) #endif {} // initialisation void DataFlash_File::Init(const struct LogStructure *structure, uint8_t num_types) { DataFlash_Class::Init(structure, num_types); // create the log directory if need be int ret; struct stat st; #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // try to cope with an existing lowercase log directory // name. NuttX does not handle case insensitive VFAT well DIR *d = opendir("/fs/microsd/APM"); if (d != NULL) { for (struct dirent *de=readdir(d); de; de=readdir(d)) { if (strcmp(de->d_name, "logs") == 0) { rename("/fs/microsd/APM/logs", "/fs/microsd/APM/OLDLOGS"); break; } } closedir(d); } #endif ret = stat(_log_directory, &st); if (ret == -1) { ret = mkdir(_log_directory, 0777); } if (ret == -1) { hal.console->printf("Failed to create log directory %s", _log_directory); return; } if (_writebuf != NULL) { free(_writebuf); } _writebuf = (uint8_t *)malloc(_writebuf_size); if (_writebuf == NULL) { return; } _writebuf_head = _writebuf_tail = 0; _initialised = true; hal.scheduler->register_io_process(AP_HAL_MEMBERPROC(&DataFlash_File::_io_timer)); } // return true for CardInserted() if we successfully initialised bool DataFlash_File::CardInserted(void) { return _initialised; } // erase handling bool DataFlash_File::NeedErase(void) { // we could add a format marker at the start of a file? return false; } /* construct a log file name given a log number. Note: Caller must free. */ char *DataFlash_File::_log_file_name(uint16_t log_num) { char *buf = NULL; asprintf(&buf, "%s/%u.BIN", _log_directory, (unsigned)log_num); return buf; } /* return path name of the lastlog.txt marker file Note: Caller must free. */ char *DataFlash_File::_lastlog_file_name(void) { char *buf = NULL; asprintf(&buf, "%s/LASTLOG.TXT", _log_directory); return buf; } // remove all log files void DataFlash_File::EraseAll() { uint16_t log_num; stop_logging(); for (log_num=0; log_num (_tail=buf##_tail))? (buf##_size - buf##_head) + _tail: _tail - buf##_head) #define BUF_SPACE(buf) (((_head=buf##_head) > buf##_tail)?(_head - buf##_tail) - 1:((buf##_size - buf##_tail) + _head) - 1) #define BUF_EMPTY(buf) (buf##_head == buf##_tail) #define BUF_ADVANCETAIL(buf, n) buf##_tail = (buf##_tail + n) % buf##_size #define BUF_ADVANCEHEAD(buf, n) buf##_head = (buf##_head + n) % buf##_size /* Write a block of data at current offset */ void DataFlash_File::WriteBlock(const void *pBuffer, uint16_t size) { if (_write_fd == -1 || !_initialised || !_writes_enabled) { return; } uint16_t _head; uint16_t space = BUF_SPACE(_writebuf); if (space < size) { // discard the whole write, to keep the log consistent return; } if (_writebuf_tail < _head) { // perform as single memcpy assert(_writebuf_tail+size <= _writebuf_size); memcpy(&_writebuf[_writebuf_tail], pBuffer, size); BUF_ADVANCETAIL(_writebuf, size); } else { // perform as two memcpy calls uint16_t n = _writebuf_size - _writebuf_tail; if (n > size) n = size; assert(_writebuf_tail+n <= _writebuf_size); memcpy(&_writebuf[_writebuf_tail], pBuffer, n); BUF_ADVANCETAIL(_writebuf, n); pBuffer = (const void *)(((const uint8_t *)pBuffer) + n); n = size - n; if (n > 0) { assert(_writebuf_tail+n <= _writebuf_size); memcpy(&_writebuf[_writebuf_tail], pBuffer, n); BUF_ADVANCETAIL(_writebuf, n); } } } /* read a packet. The header bytes have already been read. */ void DataFlash_File::ReadBlock(void *pkt, uint16_t size) { if (_read_fd == -1 || !_initialised) { return; } memset(pkt, 0, size); ::read(_read_fd, pkt, size); _read_offset += size; } /* find the highest log number */ uint16_t DataFlash_File::find_last_log(void) { unsigned ret = 0; char *fname = _lastlog_file_name(); if (fname == NULL) { return ret; } FILE *f = ::fopen(fname, "r"); free(fname); if (f != NULL) { char buf[10]; memset(buf, 0, sizeof(buf)); // PX4 doesn't have fscanf() if (fread(buf, 1, sizeof(buf)-1, f) > 0) { sscanf(buf, "%u", &ret); } fclose(f); } return ret; } uint32_t DataFlash_File::_get_log_size(uint16_t log_num) { char *fname = _log_file_name(log_num); if (fname == NULL) { return 0; } struct stat st; if (::stat(fname, &st) != 0) { free(fname); return 0; } free(fname); return st.st_size; } uint32_t DataFlash_File::_get_log_time(uint16_t log_num) { char *fname = _log_file_name(log_num); if (fname == NULL) { return 0; } struct stat st; if (::stat(fname, &st) != 0) { free(fname); return 0; } free(fname); return st.st_mtime; } /* find the number of pages in a log */ void DataFlash_File::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page) { start_page = 0; end_page = _get_log_size(log_num) / DATAFLASH_PAGE_SIZE; } /* find the number of pages in a log */ int16_t DataFlash_File::get_log_data(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data) { if (!_initialised) { return -1; } if (_read_fd != -1 && log_num != _read_fd_log_num) { ::close(_read_fd); _read_fd = -1; } if (_read_fd == -1) { char *fname = _log_file_name(log_num); if (fname == NULL) { return -1; } stop_logging(); _read_fd = ::open(fname, O_RDONLY); free(fname); if (_read_fd == -1) { return -1; } _read_offset = 0; _read_fd_log_num = log_num; } uint32_t ofs = page * (uint32_t)DATAFLASH_PAGE_SIZE + offset; /* this rather strange bit of code is here to work around a bug in file offsets in NuttX. Every few hundred blocks of reads (starting at around 350k into a file) NuttX will get the wrong offset for sequential reads. The offset it gets is typically 128k earlier than it should be. It turns out that calling lseek() with 0 offset and SEEK_CUR works around the bug. We can remove this once we find the real bug. */ if (ofs / 4096 != (ofs+len) / 4096) { off_t seek_current = ::lseek(_read_fd, 0, SEEK_CUR); if (seek_current != (off_t)_read_offset) { ::lseek(_read_fd, _read_offset, SEEK_SET); } } if (ofs != _read_offset) { ::lseek(_read_fd, ofs, SEEK_SET); _read_offset = ofs; } int16_t ret = (int16_t)::read(_read_fd, data, len); if (ret > 0) { _read_offset += ret; } return ret; } /* find size and date of a log */ void DataFlash_File::get_log_info(uint16_t log_num, uint32_t &size, uint32_t &time_utc) { size = _get_log_size(log_num); time_utc = _get_log_time(log_num); } /* get the number of logs - note that the log numbers must be consecutive */ uint16_t DataFlash_File::get_num_logs(void) { uint16_t ret; uint16_t high = find_last_log(); for (ret=0; ret 0 || log_num == 0) { log_num++; } if (log_num > MAX_LOG_FILES) { log_num = 1; } char *fname = _log_file_name(log_num); _write_fd = ::open(fname, O_WRONLY|O_CREAT|O_TRUNC, 0666); free(fname); if (_write_fd == -1) { _initialised = false; return 0xFFFF; } _write_offset = 0; _writebuf_head = 0; _writebuf_tail = 0; log_write_started = true; // now update lastlog.txt with the new log number fname = _lastlog_file_name(); FILE *f = ::fopen(fname, "w"); fprintf(f, "%u\r\n", (unsigned)log_num); fclose(f); free(fname); return log_num; } /* Read the log and print it on port */ void DataFlash_File::LogReadProcess(uint16_t log_num, uint16_t start_page, uint16_t end_page, void (*print_mode)(AP_HAL::BetterStream *port, uint8_t mode), AP_HAL::BetterStream *port) { uint8_t log_step = 0; if (!_initialised) { return; } if (_read_fd != -1) { ::close(_read_fd); _read_fd = -1; } char *fname = _log_file_name(log_num); if (fname == NULL) { return; } _read_fd = ::open(fname, O_RDONLY); free(fname); if (_read_fd == -1) { return; } _read_fd_log_num = log_num; _read_offset = 0; if (start_page != 0) { ::lseek(_read_fd, start_page * DATAFLASH_PAGE_SIZE, SEEK_SET); _read_offset = start_page * DATAFLASH_PAGE_SIZE; } uint8_t log_counter = 0; while (true) { uint8_t data; if (::read(_read_fd, &data, 1) != 1) { // reached end of file break; } _read_offset++; // This is a state machine to read the packets switch(log_step) { case 0: if (data == HEAD_BYTE1) { log_step++; } break; case 1: if (data == HEAD_BYTE2) { log_step++; } else { log_step = 0; } break; case 2: log_step = 0; _print_log_entry(data, print_mode, port); log_counter++; if (log_counter == 10) { log_counter = 0; ::lseek(_read_fd, 0, SEEK_CUR); } break; } if (_read_offset >= (end_page+1) * DATAFLASH_PAGE_SIZE) { break; } } ::close(_read_fd); _read_fd = -1; } /* this is a lot less verbose than the block interface. Dumping 2Gbyte of logs a page at a time isn't so useful. Just pull the SD card out and look at it on your PC */ void DataFlash_File::DumpPageInfo(AP_HAL::BetterStream *port) { port->printf_P(PSTR("DataFlash: num_logs=%u\n"), (unsigned)get_num_logs()); } void DataFlash_File::ShowDeviceInfo(AP_HAL::BetterStream *port) { port->printf_P(PSTR("DataFlash logs stored in %s\n"), _log_directory); } /* list available log numbers */ void DataFlash_File::ListAvailableLogs(AP_HAL::BetterStream *port) { uint16_t num_logs = get_num_logs(); int16_t last_log_num = find_last_log(); if (num_logs == 0) { port->printf_P(PSTR("\nNo logs\n\n")); return; } port->printf_P(PSTR("\n%u logs\n"), (unsigned)num_logs); for (uint16_t i=num_logs; i>=1; i--) { uint16_t log_num = last_log_num - i + 1; off_t size; char *filename = _log_file_name(log_num); if (filename != NULL) { size = _get_log_size(log_num); if (size != 0) { struct stat st; if (stat(filename, &st) == 0) { struct tm *tm = gmtime(&st.st_mtime); port->printf_P(PSTR("Log %u in %s of size %u %u/%u/%u %u:%u\n"), (unsigned)log_num, filename, (unsigned)size, (unsigned)tm->tm_year+1900, (unsigned)tm->tm_mon+1, (unsigned)tm->tm_mday, (unsigned)tm->tm_hour, (unsigned)tm->tm_min); } } free(filename); } } port->println(); } void DataFlash_File::_io_timer(void) { uint16_t _tail; if (_write_fd == -1 || !_initialised) { return; } uint16_t nbytes = BUF_AVAILABLE(_writebuf); if (nbytes == 0) { return; } uint32_t tnow = hal.scheduler->micros(); if (nbytes < _writebuf_chunk && tnow - _last_write_time < 2000000UL) { // write in 512 byte chunks, but always write at least once // per 2 seconds if data is available return; } perf_begin(_perf_write); _last_write_time = tnow; if (nbytes > _writebuf_chunk) { // be kind to the FAT PX4 filesystem nbytes = _writebuf_chunk; } if (_writebuf_head > _tail) { // only write to the end of the buffer nbytes = min(nbytes, _writebuf_size - _writebuf_head); } // try to align writes on a 512 byte boundary to avoid filesystem // reads if ((nbytes + _write_offset) % 512 != 0) { uint32_t ofs = (nbytes + _write_offset) % 512; if (ofs < nbytes) { nbytes -= ofs; } } assert(_writebuf_head+nbytes <= _writebuf_size); ssize_t nwritten = ::write(_write_fd, &_writebuf[_writebuf_head], nbytes); if (nwritten <= 0) { perf_count(_perf_errors); close(_write_fd); _write_fd = -1; _initialised = false; } else { _write_offset += nwritten; /* the best strategy for minimising corruption on microSD cards seems to be to write in 4k chunks and fsync the file on each chunk, ensuring the directory entry is updated after each write. */ #if CONFIG_HAL_BOARD != HAL_BOARD_AVR_SITL ::fsync(_write_fd); #endif BUF_ADVANCEHEAD(_writebuf, nwritten); } perf_end(_perf_write); } #endif // HAL_OS_POSIX_IO