#include "GCS_Mavlink.h" #include "Plane.h" MAV_TYPE GCS_MAVLINK_Plane::frame_type() const { return plane.quadplane.get_mav_type(); } MAV_MODE GCS_MAVLINK_Plane::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (plane.control_mode) { case MANUAL: case TRAINING: case ACRO: _base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case STABILIZE: case FLY_BY_WIRE_A: case AUTOTUNE: case FLY_BY_WIRE_B: case QSTABILIZE: case QHOVER: case QLOITER: case QLAND: case CRUISE: _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; break; case AUTO: case RTL: case LOITER: case AVOID_ADSB: case GUIDED: case CIRCLE: case QRTL: _base_mode = MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: break; } if (!plane.training_manual_pitch || !plane.training_manual_roll) { _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.control_mode != MANUAL && plane.control_mode != INITIALISING) { // stabiliser of some form is enabled _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.g.stick_mixing != STICK_MIXING_DISABLED && plane.control_mode != INITIALISING) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #if HIL_SUPPORT if (plane.g.hil_mode == 1) { _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; } #endif // we are armed if we are not initialising if (plane.control_mode != INITIALISING && plane.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_MAVLINK_Plane::custom_mode() const { return plane.control_mode; } MAV_STATE GCS_MAVLINK_Plane::system_status() const { if (plane.control_mode == INITIALISING) { return MAV_STATE_CALIBRATING; } if (plane.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (plane.crash_state.is_crashed) { return MAV_STATE_EMERGENCY; } if (plane.is_flying()) { return MAV_STATE_ACTIVE; } return MAV_STATE_STANDBY; } void Plane::send_attitude(mavlink_channel_t chan) { float r = ahrs.roll; float p = ahrs.pitch - radians(g.pitch_trim_cd*0.01f); float y = ahrs.yaw; if (quadplane.tailsitter_active()) { r = quadplane.ahrs_view->roll; p = quadplane.ahrs_view->pitch; y = quadplane.ahrs_view->yaw; } const Vector3f &omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), r, p, y, omega.x, omega.y, omega.z); } void Plane::send_aoa_ssa(mavlink_channel_t chan) { mavlink_msg_aoa_ssa_send( chan, micros(), ahrs.getAOA(), ahrs.getSSA()); } #if GEOFENCE_ENABLED == ENABLED void Plane::send_fence_status(mavlink_channel_t chan) { geofence_send_status(chan); } #endif void Plane::send_extended_status1(mavlink_channel_t chan) { int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } update_sensor_status_flags(); mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average() * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void Plane::send_location(mavlink_channel_t chan) { uint32_t fix_time_ms; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { fix_time_ms = gps.last_fix_time_ms(); } else { fix_time_ms = millis(); } const Vector3f &vel = gps.velocity(); mavlink_msg_global_position_int_send( chan, fix_time_ms, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees current_loc.alt * 10UL, // millimeters above sea level relative_altitude * 1.0e3f, // millimeters above ground vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * 100, // Z speed cm/s (+ve Down) ahrs.yaw_sensor); } void Plane::send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, nav_roll_cd * 0.01f, nav_pitch_cd * 0.01f, nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, MIN(auto_state.wp_distance, UINT16_MAX), altitude_error_cm * 0.01f, airspeed_error * 100, nav_controller->crosstrack_error()); } void Plane::send_position_target_global_int(mavlink_channel_t chan) { mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL_INT, // targets are always global altitude 0xFFF8, // ignore everything except the x/y/z components next_WP_loc.lat, // latitude as 1e7 next_WP_loc.lng, // longitude as 1e7 next_WP_loc.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void Plane::send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) / 4500.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / 4500.0f), 0, 0, 0, 0, rssi.read_receiver_rssi_uint8()); } void Plane::send_vfr_hud(mavlink_channel_t chan) { float aspeed; if (airspeed.enabled()) { aspeed = airspeed.get_airspeed(); } else if (!ahrs.airspeed_estimate(&aspeed)) { aspeed = 0; } mavlink_msg_vfr_hud_send( chan, aspeed, ahrs.groundspeed(), (ahrs.yaw_sensor / 100) % 360, abs(throttle_percentage()), current_loc.alt / 100.0f, (g2.soaring_controller.is_active() ? g2.soaring_controller.get_vario_reading() : barometer.get_climb_rate())); } /* keep last HIL_STATE message to allow sending SIM_STATE */ #if HIL_SUPPORT static mavlink_hil_state_t last_hil_state; #endif // report simulator state void Plane::send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.simstate_send(chan); #elif HIL_SUPPORT if (g.hil_mode == 1) { mavlink_msg_simstate_send(chan, last_hil_state.roll, last_hil_state.pitch, last_hil_state.yaw, last_hil_state.xacc*0.001f*GRAVITY_MSS, last_hil_state.yacc*0.001f*GRAVITY_MSS, last_hil_state.zacc*0.001f*GRAVITY_MSS, last_hil_state.rollspeed, last_hil_state.pitchspeed, last_hil_state.yawspeed, last_hil_state.lat, last_hil_state.lon); } #endif } void Plane::send_wind(mavlink_channel_t chan) { Vector3f wind = ahrs.wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), // use negative, to give // direction wind is coming from wind.length(), wind.z); } /* send RPM packet */ void NOINLINE Plane::send_rpm(mavlink_channel_t chan) { if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { mavlink_msg_rpm_send( chan, rpm_sensor.get_rpm(0), rpm_sensor.get_rpm(1)); } } // sends a single pid info over the provided channel void Plane::send_pid_info(const mavlink_channel_t chan, const DataFlash_Class::PID_Info *pid_info, const uint8_t axis, const float achieved) { if (pid_info == nullptr) { return; } if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } mavlink_msg_pid_tuning_send(chan, axis, pid_info->desired, achieved, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); } /* send PID tuning message */ void Plane::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); const DataFlash_Class::PID_Info *pid_info; if (g.gcs_pid_mask & TUNING_BITS_ROLL) { if (quadplane.in_vtol_mode()) { pid_info = &quadplane.attitude_control->get_rate_roll_pid().get_pid_info(); } else { pid_info = &rollController.get_pid_info(); } send_pid_info(chan, pid_info, PID_TUNING_ROLL, degrees(gyro.x)); } if (g.gcs_pid_mask & TUNING_BITS_PITCH) { if (quadplane.in_vtol_mode()) { pid_info = &quadplane.attitude_control->get_rate_pitch_pid().get_pid_info(); } else { pid_info = &pitchController.get_pid_info(); } send_pid_info(chan, pid_info, PID_TUNING_PITCH, degrees(gyro.y)); } if (g.gcs_pid_mask & TUNING_BITS_YAW) { if (quadplane.in_vtol_mode()) { pid_info = &quadplane.attitude_control->get_rate_yaw_pid().get_pid_info(); } else { pid_info = &yawController.get_pid_info(); } send_pid_info(chan, pid_info, PID_TUNING_YAW, degrees(gyro.z)); } if (g.gcs_pid_mask & TUNING_BITS_STEER) { send_pid_info(chan, &steerController.get_pid_info(), PID_TUNING_STEER, degrees(gyro.z)); } if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND)) { send_pid_info(chan, landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z)); } } uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const { return plane.g.sysid_my_gcs; } uint32_t GCS_MAVLINK_Plane::telem_delay() const { return (uint32_t)(plane.g.telem_delay); } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id) { if (telemetry_delayed()) { return false; } // if we don't have at least 0.2ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!hal.scheduler->in_delay_callback() && plane.scheduler.time_available_usec() < 200) { gcs().set_out_of_time(true); return false; } switch (id) { case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); plane.send_extended_status1(chan); CHECK_PAYLOAD_SIZE2(POWER_STATUS); send_power_status(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); plane.send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); plane.send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: if (plane.control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); plane.send_nav_controller_output(chan); } break; case MSG_POSITION_TARGET_GLOBAL_INT: if (plane.control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT); plane.send_position_target_global_int(chan); } break; case MSG_SERVO_OUT: #if HIL_SUPPORT if (plane.g.hil_mode == 1) { CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); plane.send_servo_out(chan); } #endif break; case MSG_SERVO_OUTPUT_RAW: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); #if HIL_SUPPORT send_servo_output_raw(plane.g.hil_mode); #else send_servo_output_raw(false); #endif break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); plane.send_vfr_hud(chan); break; case MSG_FENCE_STATUS: #if GEOFENCE_ENABLED == ENABLED CHECK_PAYLOAD_SIZE(FENCE_STATUS); plane.send_fence_status(chan); #endif break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); plane.send_simstate(chan); CHECK_PAYLOAD_SIZE2(AHRS2); send_ahrs2(); break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); plane.terrain.send_request(chan); #endif break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); plane.send_wind(chan); break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); plane.camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_OPTICAL_FLOW: #if OPTFLOW == ENABLED if (plane.optflow.enabled()) { CHECK_PAYLOAD_SIZE(OPTICAL_FLOW); send_opticalflow(plane.optflow); } #endif break; case MSG_EKF_STATUS_REPORT: #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); plane.ahrs.send_ekf_status_report(chan); #endif break; case MSG_GIMBAL_REPORT: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(GIMBAL_REPORT); plane.camera_mount.send_gimbal_report(chan); #endif break; case MSG_PID_TUNING: if (plane.control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(PID_TUNING); plane.send_pid_tuning(chan); } break; case MSG_RPM: CHECK_PAYLOAD_SIZE(RPM); plane.send_rpm(chan); break; case MSG_ADSB_VEHICLE: CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); plane.adsb.send_adsb_vehicle(chan); break; case MSG_AOA_SSA: CHECK_PAYLOAD_SIZE(AOA_SSA); plane.send_aoa_ssa(chan); break; case MSG_LANDING: plane.landing.send_landing_message(chan); break; default: return GCS_MAVLINK::try_send_message(id); } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), // @Param: ADSB // @DisplayName: ADSB stream rate to ground station // @Description: ADSB stream rate to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @User: Advanced AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 5), AP_GROUPEND }; static const uint8_t STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU1, // RAW_IMU, SCALED_IMU2, SCALED_IMU3 MSG_RAW_IMU2, // SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 MSG_RAW_IMU3 // SENSOR_OFFSETS }; static const uint8_t STREAM_EXTENDED_STATUS_msgs[] = { MSG_EXTENDED_STATUS1, // SYS_STATUS, POWER_STATUS MSG_EXTENDED_STATUS2, // MEMINFO MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const uint8_t STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const uint8_t STREAM_RAW_CONTROLLER_msgs[] = { MSG_SERVO_OUT, }; static const uint8_t STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN }; static const uint8_t STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, // SIMSTATE, AHRS2 MSG_RPM, MSG_AOA_SSA, MSG_PID_TUNING, MSG_LANDING }; static const uint8_t STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const uint8_t STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_SYSTEM_TIME, #if AP_TERRAIN_AVAILABLE MSG_TERRAIN, #endif MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, }; static const uint8_t STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Plane::in_hil_mode() const { #if HIL_SUPPORT return plane.g.hil_mode == 1; #endif return false; } /* handle a request to switch to guided mode. This happens via a callback from handle_mission_item() */ bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (plane.control_mode != GUIDED) { // only accept position updates when in GUIDED mode return false; } plane.guided_WP_loc = cmd.content.location; // add home alt if needed if (plane.guided_WP_loc.flags.relative_alt) { plane.guided_WP_loc.alt += plane.home.alt; plane.guided_WP_loc.flags.relative_alt = 0; } plane.set_guided_WP(); return true; } /* handle a request to change current WP altitude. This happens via a callback from handle_mission_item() */ void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { plane.next_WP_loc.alt = cmd.content.location.alt; if (cmd.content.location.flags.relative_alt) { plane.next_WP_loc.alt += plane.home.alt; } plane.next_WP_loc.flags.relative_alt = false; plane.next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt; plane.reset_offset_altitude(); } MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_long_t &packet) { plane.in_calibration = true; MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet); plane.in_calibration = false; return ret; } MAV_RESULT GCS_MAVLINK_Plane::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param4,1.0f)) { /* radio trim */ plane.trim_radio(); return MAV_RESULT_ACCEPTED; } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { plane.avoidance_adsb.handle_msg(msg); GCS_MAVLINK::packetReceived(status, msg); } void GCS_MAVLINK_Plane::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { handle_request_data_stream(msg, true); break; } case MAVLINK_MSG_ID_COMMAND_INT: { // decode mavlink_command_int_t packet; mavlink_msg_command_int_decode(msg, &packet); MAV_RESULT result = MAV_RESULT_UNSUPPORTED; switch(packet.command) { case MAV_CMD_DO_SET_HOME: { result = MAV_RESULT_FAILED; // assume failure if (is_equal(packet.param1, 1.0f)) { plane.init_home(); } else { // ensure param1 is zero if (!is_zero(packet.param1)) { break; } if ((packet.x == 0) && (packet.y == 0) && is_zero(packet.z)) { // don't allow the 0,0 position break; } // check frame type is supported if (packet.frame != MAV_FRAME_GLOBAL && packet.frame != MAV_FRAME_GLOBAL_INT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { break; } // sanity check location if (!check_latlng(packet.x, packet.y)) { break; } Location new_home_loc {}; new_home_loc.lat = packet.x; new_home_loc.lng = packet.y; new_home_loc.alt = packet.z * 100; // handle relative altitude if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { if (!AP::ahrs().home_is_set()) { // cannot use relative altitude if home is not set break; } new_home_loc.alt += plane.ahrs.get_home().alt; } plane.ahrs.set_home(new_home_loc); AP::ahrs().set_home_status(HOME_SET_NOT_LOCKED); AP::ahrs().Log_Write_Home_And_Origin(); gcs().send_home(new_home_loc); result = MAV_RESULT_ACCEPTED; gcs().send_text(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um", (double)(new_home_loc.lat*1.0e-7f), (double)(new_home_loc.lng*1.0e-7f), (uint32_t)(new_home_loc.alt*0.01f)); } break; } case MAV_CMD_DO_REPOSITION: // sanity check location if (!check_latlng(packet.x, packet.y)) { result = MAV_RESULT_FAILED; break; } Location requested_position {}; requested_position.lat = packet.x; requested_position.lng = packet.y; // check the floating representation for overflow of altitude if (fabsf(packet.z * 100.0f) >= 0x7fffff) { result = MAV_RESULT_FAILED; break; } requested_position.alt = (int32_t)(packet.z * 100.0f); // load option flags if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { requested_position.flags.relative_alt = 1; } else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { requested_position.flags.terrain_alt = 1; } else if (packet.frame != MAV_FRAME_GLOBAL_INT) { // not a supported frame break; } if (is_zero(packet.param4)) { requested_position.flags.loiter_ccw = 0; } else { requested_position.flags.loiter_ccw = 1; } if (location_sanitize(plane.current_loc, requested_position)) { // if the location wasn't already sane don't load it result = MAV_RESULT_FAILED; // failed as the location is not valid break; } // location is valid load and set if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) || (plane.control_mode == GUIDED)) { plane.set_mode(GUIDED, MODE_REASON_GCS_COMMAND); plane.guided_WP_loc = requested_position; // add home alt if needed if (plane.guided_WP_loc.flags.relative_alt) { plane.guided_WP_loc.alt += plane.home.alt; plane.guided_WP_loc.flags.relative_alt = 0; } plane.set_guided_WP(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; // failed as we are not in guided } break; } mavlink_msg_command_ack_send_buf( msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); MAV_RESULT result = MAV_RESULT_UNSUPPORTED; // do command switch(packet.command) { case MAV_CMD_DO_CHANGE_SPEED: // if we're in failsafe modes (e.g., RTL, LOITER) or in pilot // controlled modes (e.g., MANUAL, TRAINING) // this command should be ignored since it comes in from GCS // or a companion computer: result = MAV_RESULT_FAILED; if (plane.control_mode != GUIDED && plane.control_mode != AUTO && plane.control_mode != AVOID_ADSB) { // failed break; } AP_Mission::Mission_Command cmd; if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd) == MAV_MISSION_ACCEPTED) { plane.do_change_speed(cmd); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_LOITER_UNLIM: plane.set_mode(LOITER, MODE_REASON_GCS_COMMAND); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: plane.set_mode(RTL, MODE_REASON_GCS_COMMAND); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_NAV_TAKEOFF: { // user takeoff only works with quadplane code for now // param7 : altitude [metres] float takeoff_alt = packet.param7; if (plane.quadplane.available() && plane.quadplane.do_user_takeoff(takeoff_alt)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; } #if MOUNT == ENABLED // Sets the region of interest (ROI) for the camera case MAV_CMD_DO_SET_ROI: // sanity check location if (!check_latlng(packet.param5, packet.param6)) { break; } Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (plane.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { plane.camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount plane.camera_mount.set_roi_target(roi_loc); } result = MAV_RESULT_ACCEPTED; break; #endif case MAV_CMD_DO_MOUNT_CONTROL: #if MOUNT == ENABLED plane.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7); result = MAV_RESULT_ACCEPTED; #endif break; case MAV_CMD_MISSION_START: plane.set_mode(AUTO, MODE_REASON_GCS_COMMAND); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // run pre_arm_checks and arm_checks and display failures if (plane.arm_motors(AP_Arming::MAVLINK)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_zero(packet.param1)) { if (plane.disarm_motors()) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: result = handle_preflight_reboot(packet, plane.quadplane.enable != 0); break; case MAV_CMD_DO_LAND_START: result = MAV_RESULT_FAILED; // attempt to switch to next DO_LAND_START command in the mission if (plane.mission.jump_to_landing_sequence()) { plane.set_mode(AUTO, MODE_REASON_UNKNOWN); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_GO_AROUND: result = MAV_RESULT_FAILED; if (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { // Initiate an aborted landing. This will trigger a pitch-up and // climb-out to a safe altitude holding heading then one of the // following actions will occur, check for in this order: // - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission, // increment mission index to execute it // - else if DO_LAND_START is available, jump to it // - else decrement the mission index to repeat the landing approach if (!is_zero(packet.param1)) { plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100; } if (plane.landing.request_go_around()) { plane.auto_state.next_wp_crosstrack = false; result = MAV_RESULT_ACCEPTED; } } break; case MAV_CMD_DO_FENCE_ENABLE: result = MAV_RESULT_ACCEPTED; if (!plane.geofence_present()) { gcs().send_text(MAV_SEVERITY_NOTICE,"Fence not configured"); result = MAV_RESULT_FAILED; } else { switch((uint16_t)packet.param1) { case 0: if (! plane.geofence_set_enabled(false, GCS_TOGGLED)) { result = MAV_RESULT_FAILED; } break; case 1: if (! plane.geofence_set_enabled(true, GCS_TOGGLED)) { result = MAV_RESULT_FAILED; } break; case 2: //disable fence floor only if (! plane.geofence_set_floor_enabled(false)) { result = MAV_RESULT_FAILED; } else { gcs().send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled"); } break; default: result = MAV_RESULT_FAILED; break; } } break; case MAV_CMD_DO_SET_HOME: { // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) result = MAV_RESULT_FAILED; // assume failure if (is_equal(packet.param1,1.0f)) { plane.init_home(); } else { // ensure param1 is zero if (!is_zero(packet.param1)) { break; } if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) { // don't allow the 0,0 position break; } // sanity check location if (!check_latlng(packet.param5,packet.param6)) { break; } Location new_home_loc {}; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); plane.ahrs.set_home(new_home_loc); AP::ahrs().set_home_status(HOME_SET_NOT_LOCKED); AP::ahrs().Log_Write_Home_And_Origin(); gcs().send_home(new_home_loc); result = MAV_RESULT_ACCEPTED; gcs().send_text(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um", (double)(new_home_loc.lat*1.0e-7f), (double)(new_home_loc.lng*1.0e-7f), (uint32_t)(new_home_loc.alt*0.01f)); } break; } case MAV_CMD_DO_AUTOTUNE_ENABLE: // param1 : enable/disable plane.autotune_enable(!is_zero(packet.param1)); break; #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // configure or release parachute result = MAV_RESULT_ACCEPTED; switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: plane.parachute.enabled(false); break; case PARACHUTE_ENABLE: plane.parachute.enabled(true); break; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude if (plane.parachute.released()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released"); result = MAV_RESULT_FAILED; } else if (!plane.parachute.enabled()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled"); result = MAV_RESULT_FAILED; } else { if (!plane.parachute_manual_release()) { result = MAV_RESULT_FAILED; } } break; default: result = MAV_RESULT_FAILED; break; } break; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) // param5 : motor count (number of motors to test in sequence) result = plane.quadplane.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.param5); break; case MAV_CMD_DO_VTOL_TRANSITION: if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_ENGINE_CONTROL: if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3)) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_ACCELCAL_VEHICLE_POS: result = MAV_RESULT_FAILED; if (plane.ins.get_acal()->gcs_vehicle_position(packet.param1)) { result = MAV_RESULT_ACCEPTED; } break; #if GRIPPER_ENABLED == ENABLED case MAV_CMD_DO_GRIPPER: // param1 : gripper number (ignored) // param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum. if(!plane.g2.gripper.enabled()) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case GRIPPER_ACTION_RELEASE: plane.g2.gripper.release(); gcs().send_text(MAV_SEVERITY_INFO, "Gripper Released"); break; case GRIPPER_ACTION_GRAB: plane.g2.gripper.grab(); gcs().send_text(MAV_SEVERITY_INFO, "Gripper Grabbed"); break; default: result = MAV_RESULT_FAILED; break; } } break; #endif default: result = handle_command_long_message(packet); break; } mavlink_msg_command_ack_send_buf( msg, chan, packet.command, result); break; } #if GEOFENCE_ENABLED == ENABLED // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(msg, &packet); if (plane.g.fence_action != FENCE_ACTION_NONE) { send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled"); } else if (packet.count != plane.g.fence_total) { send_text(MAV_SEVERITY_WARNING,"Bad fence point"); } else if (!check_latlng(packet.lat,packet.lng)) { send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large"); } else { plane.set_fence_point_with_index(Vector2l(packet.lat*1.0e7f, packet.lng*1.0e7f), packet.idx); } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(msg, &packet); if (packet.idx >= plane.g.fence_total) { send_text(MAV_SEVERITY_WARNING,"Bad fence point"); } else { Vector2l point = plane.get_fence_point_with_index(packet.idx); mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.g.fence_total, point.x*1.0e-7f, point.y*1.0e-7f); } break; } #endif // GEOFENCE_ENABLED case MAVLINK_MSG_ID_GIMBAL_REPORT: { #if MOUNT == ENABLED handle_gimbal_report(plane.camera_mount, msg); #endif break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != plane.g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; bool override_active = false; mavlink_msg_rc_channels_override_decode(msg, &packet); override_active |= RC_Channels::set_override(0, packet.chan1_raw); override_active |= RC_Channels::set_override(1, packet.chan2_raw); override_active |= RC_Channels::set_override(2, packet.chan3_raw); override_active |= RC_Channels::set_override(3, packet.chan4_raw); override_active |= RC_Channels::set_override(4, packet.chan5_raw); override_active |= RC_Channels::set_override(5, packet.chan6_raw); override_active |= RC_Channels::set_override(6, packet.chan7_raw); override_active |= RC_Channels::set_override(7, packet.chan8_raw); if (override_active) { plane.failsafe.last_valid_rc_ms = AP_HAL::millis(); plane.failsafe.AFS_last_valid_rc_ms = plane.failsafe.last_valid_rc_ms; } // a RC override message is consiered to be a 'heartbeat' from // the ground station for failsafe purposes plane.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg->sysid != plane.g.sysid_my_gcs) { break; // only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(msg, &packet); if (packet.target != plane.g.sysid_this_mav) { break; // only accept messages aimed at us } bool override_active = false; int16_t roll = (packet.y == INT16_MAX) ? 0 : plane.channel_roll->get_radio_min() + (plane.channel_roll->get_radio_max() - plane.channel_roll->get_radio_min()) * (packet.y + 1000) / 2000.0f; int16_t pitch = (packet.x == INT16_MAX) ? 0 : plane.channel_pitch->get_radio_min() + (plane.channel_pitch->get_radio_max() - plane.channel_pitch->get_radio_min()) * (-packet.x + 1000) / 2000.0f; int16_t throttle = (packet.z == INT16_MAX) ? 0 : plane.channel_throttle->get_radio_min() + (plane.channel_throttle->get_radio_max() - plane.channel_throttle->get_radio_min()) * (packet.z) / 1000.0f; int16_t yaw = (packet.r == INT16_MAX) ? 0 : plane.channel_rudder->get_radio_min() + (plane.channel_rudder->get_radio_max() - plane.channel_rudder->get_radio_min()) * (packet.r + 1000) / 2000.0f; override_active |= RC_Channels::set_override(uint8_t(plane.rcmap.roll() - 1), roll); override_active |= RC_Channels::set_override(uint8_t(plane.rcmap.pitch() - 1), pitch); override_active |= RC_Channels::set_override(uint8_t(plane.rcmap.throttle() - 1), throttle); override_active |= RC_Channels::set_override(uint8_t(plane.rcmap.yaw() - 1), yaw); if (override_active) { plane.failsafe.last_valid_rc_ms = AP_HAL::millis(); plane.failsafe.AFS_last_valid_rc_ms = plane.failsafe.last_valid_rc_ms; } // a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes plane.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from // our GCS for failsafe purposes if (msg->sysid != plane.g.sysid_my_gcs) break; plane.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_HIL_STATE: { #if HIL_SUPPORT if (plane.g.hil_mode != 1) { break; } mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } last_hil_state = packet; // set gps hil sensor Location loc; memset(&loc, 0, sizeof(loc)); loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; // setup airspeed pressure based on 3D speed, no wind plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013); plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * GRAVITY_MSS*0.001f; accels.y = packet.yacc * GRAVITY_MSS*0.001f; accels.z = packet.zacc * GRAVITY_MSS*0.001f; plane.ins.set_gyro(0, gyros); plane.ins.set_accel(0, accels); plane.barometer.setHIL(packet.alt*0.001f); plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); // cope with DCM getting badly off due to HIL lag if (plane.g.hil_err_limit > 0 && (fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) || fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) || wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) { plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw); } #endif break; } #if MOUNT == ENABLED //deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { plane.camera_mount.configure_msg(msg); break; } //deprecated. Use MAV_CMD_DO_MOUNT_CONTROL case MAVLINK_MSG_ID_MOUNT_CONTROL: { plane.camera_mount.control_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, plane.DataFlash, plane.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_DISTANCE_SENSOR: plane.rangefinder.handle_msg(msg); break; case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE plane.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: { // Only allow companion computer (or other external controller) to // control attitude in GUIDED mode. We DON'T want external control // in e.g., RTL, CICLE. Specifying a single mode for companion // computer control is more safe (even more so when using // FENCE_ACTION = 4 for geofence failures). if (plane.control_mode != GUIDED && plane.control_mode != AVOID_ADSB) { // don't screw up failsafes break; } mavlink_set_attitude_target_t att_target; mavlink_msg_set_attitude_target_decode(msg, &att_target); // Mappings: If any of these bits are set, the corresponding input should be ignored. // NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted // bit 1: body roll rate // bit 2: body pitch rate // bit 3: body yaw rate // bit 4: unknown // bit 5: unknown // bit 6: reserved // bit 7: throttle // bit 8: attitude // if not setting all Quaternion values, use _rate flags to indicate which fields. // Extract the Euler roll angle from the Quaternion. Quaternion q(att_target.q[0], att_target.q[1], att_target.q[2], att_target.q[3]); // NOTE: att_target.type_mask is inverted for easier interpretation att_target.type_mask = att_target.type_mask ^ 0xFF; uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy uint32_t now = AP_HAL::millis(); if ((attitude_mask & 0b10000001) || // partial, including roll (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f; // Update timer for external roll to the nav control plane.guided_state.last_forced_rpy_ms.x = now; } if ((attitude_mask & 0b10000010) || // partial, including pitch (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f; // Update timer for external pitch to the nav control plane.guided_state.last_forced_rpy_ms.y = now; } if ((attitude_mask & 0b10000100) || // partial, including yaw (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f; // Update timer for external yaw to the nav control plane.guided_state.last_forced_rpy_ms.z = now; } if (att_target.type_mask & 0b01000000) { // throttle plane.guided_state.forced_throttle = att_target.thrust * 100.0f; // Update timer for external throttle plane.guided_state.last_forced_throttle_ms = now; } break; } case MAVLINK_MSG_ID_SET_HOME_POSITION: { mavlink_set_home_position_t packet; mavlink_msg_set_home_position_decode(msg, &packet); if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) { // don't allow the 0,0 position break; } // sanity check location if (!check_latlng(packet.latitude,packet.longitude)) { break; } Location new_home_loc {}; new_home_loc.lat = packet.latitude; new_home_loc.lng = packet.longitude; new_home_loc.alt = packet.altitude / 10; plane.ahrs.set_home(new_home_loc); plane.ahrs.set_home_status(HOME_SET_NOT_LOCKED); plane.ahrs.Log_Write_Home_And_Origin(); gcs().send_home(new_home_loc); gcs().send_text(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um", (double)(new_home_loc.lat*1.0e-7f), (double)(new_home_loc.lng*1.0e-7f), (uint32_t)(new_home_loc.alt*0.01f)); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode if (plane.control_mode != GUIDED) { break; } // only local moves for now if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) { break; } // just do altitude for now plane.next_WP_loc.alt += -packet.z*100.0; gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f", (double)((plane.next_WP_loc.alt - plane.home.alt)*0.01)); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: { // Only want to allow companion computer position control when // in a certain mode to avoid inadvertently sending these // kinds of commands when the autopilot is responding to problems // in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode // for companion computer control is more safe (provided // one uses the FENCE_ACTION = 4 (RTL) for geofence failures). if (plane.control_mode != GUIDED && plane.control_mode != AVOID_ADSB) { //don't screw up failsafes break; } mavlink_set_position_target_global_int_t pos_target; mavlink_msg_set_position_target_global_int_decode(msg, &pos_target); // Unexpectedly, the mask is expecting "ones" for dimensions that should // be IGNORNED rather than INCLUDED. See mavlink documentation of the // SET_POSITION_TARGET_GLOBAL_INT message, type_mask field. const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3) bool msg_valid = true; AP_Mission::Mission_Command cmd = {0}; if (pos_target.type_mask & alt_mask) { cmd.content.location.alt = pos_target.alt * 100; cmd.content.location.flags.relative_alt = false; cmd.content.location.flags.terrain_alt = false; switch (pos_target.coordinate_frame) { case MAV_FRAME_GLOBAL_INT: break; //default to MSL altitude case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: cmd.content.location.flags.relative_alt = true; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: cmd.content.location.flags.relative_alt = true; cmd.content.location.flags.terrain_alt = true; break; default: gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT"); msg_valid = false; break; } if (msg_valid) { handle_change_alt_request(cmd); } } // end if alt_mask break; } case MAVLINK_MSG_ID_ADSB_VEHICLE: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC: case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT: plane.adsb.handle_message(chan, msg); break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Plane::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs().chan(0).initialised) return; DataFlash.EnableWrites(false); uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs().send_message(MSG_HEARTBEAT); gcs().send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } DataFlash.EnableWrites(true); } /* * send data streams in the given rate range on both links */ void Plane::gcs_data_stream_send(void) { gcs().data_stream_send(); } /* * look for incoming commands on the GCS links */ void Plane::gcs_update(void) { gcs().update(); } /* send airspeed calibration data */ void Plane::gcs_send_airspeed_calibration(const Vector3f &vg) { gcs().send_airspeed_calibration(vg); } /** retry any deferred messages */ void Plane::gcs_retry_deferred(void) { gcs().retry_deferred(); } /* return true if we will accept this packet. Used to implement SYSID_ENFORCE */ bool GCS_MAVLINK_Plane::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg) { if (!plane.g2.sysid_enforce) { return true; } if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) { return true; } return (msg.sysid == plane.g.sysid_my_gcs); } Compass *GCS_MAVLINK_Plane::get_compass() const { return &plane.compass; } AP_Mission *GCS_MAVLINK_Plane::get_mission() { return &plane.mission; } void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg) { plane.auto_state.next_wp_crosstrack = false; GCS_MAVLINK::handle_mission_set_current(mission, msg); if (plane.control_mode == AUTO && plane.mission.state() == AP_Mission::MISSION_STOPPED) { plane.mission.resume(); } } AP_Camera *GCS_MAVLINK_Plane::get_camera() const { #if CAMERA == ENABLED return &plane.camera; #else return nullptr; #endif } AP_AdvancedFailsafe *GCS_MAVLINK_Plane::get_advanced_failsafe() const { return &plane.afs; } AP_Rally *GCS_MAVLINK_Plane::get_rally() const { return &plane.rally; } /* set_mode() wrapper for MAVLink SET_MODE */ bool GCS_MAVLINK_Plane::set_mode(const uint8_t mode) { switch (mode) { case MANUAL: case CIRCLE: case STABILIZE: case TRAINING: case ACRO: case FLY_BY_WIRE_A: case AUTOTUNE: case FLY_BY_WIRE_B: case CRUISE: case AVOID_ADSB: case GUIDED: case AUTO: case RTL: case LOITER: case QSTABILIZE: case QHOVER: case QLOITER: case QLAND: case QRTL: plane.set_mode((enum FlightMode)mode, MODE_REASON_GCS_COMMAND); return true; } return false; } const AP_FWVersion &GCS_MAVLINK_Plane::get_fwver() const { return plane.fwver; }