/************************************************************* throttle control ****************************************************************/ // user input: // ----------- void output_manual_throttle() { rc_3.servo_out = (float)rc_3.control_in * angle_boost(); } // Autopilot // --------- void output_auto_throttle() { rc_3.servo_out = (float)nav_throttle * angle_boost(); // make sure we never send a 0 throttle that will cut the motors rc_3.servo_out = max(rc_3.servo_out, 1); } void calc_nav_throttle() { // limit error long error = constrain(altitude_error, -300, 300); if(altitude_sensor == BARO) { float t = pid_baro_throttle.kP(); if(error > 0){ pid_baro_throttle.kP(t); }else{ pid_baro_throttle.kP(t/4.0); } // limit output of throttle control nav_throttle = pid_baro_throttle.get_pid(error, delta_ms_fast_loop, 1.0); nav_throttle = throttle_cruise + constrain(nav_throttle, -30, 80); pid_baro_throttle.kP(t); } else { // SONAR nav_throttle = pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, 1.0); // limit output of throttle control nav_throttle = throttle_cruise + constrain(nav_throttle, -60, 100); } nav_throttle = (nav_throttle + nav_throttle_old) >> 1; nav_throttle_old = nav_throttle; } float angle_boost() { // This is the furture replacement for the heavyweight trig functions in use now. //Matrix3f temp = dcm.get_dcm_matrix(); //cos_pitch = sqrt(1 - (temp.c.x * temp.c.x)); //cos_roll = dcm.c.z / cos_pitch; //static byte flipper; //float temp = 1 / (cos(dcm.roll) * cos(dcm.pitch)); float temp = cos(dcm.roll) * cos(dcm.pitch); temp = 2.0 - constrain(temp, .7071, 1.0); return temp; } /************************************************************* yaw control ****************************************************************/ void output_manual_yaw() { if(rc_3.control_in == 0){ clear_yaw_control(); } else { // Yaw control if(rc_4.control_in == 0){ //clear_yaw_control(); output_yaw_with_hold(true); // hold yaw }else{ output_yaw_with_hold(false); // rate control yaw } } } void auto_yaw() { output_yaw_with_hold(true); // hold yaw } /************************************************************* picth and roll control ****************************************************************/ /*// how hard to tilt towards the target // ----------------------------------- void calc_nav_pid() { // how hard to pitch to target nav_angle = pid_nav.get_pid(wp_distance * 100, dTnav, 1.0); nav_angle = constrain(nav_angle, -pitch_max, pitch_max); } // distribute the pitch angle based on our orientation // --------------------------------------------------- void calc_nav_pitch() { // how hard to pitch to target long angle = wrap_360(nav_bearing - dcm.yaw_sensor); bool rev = false; float roll_out; if(angle > 18000){ angle -= 18000; rev = true; } roll_out = abs(angle - 18000); roll_out = (9000.0 - roll_out) / 9000.0; roll_out = (rev) ? roll_out : -roll_out; nav_pitch = (float)nav_angle * roll_out; } // distribute the roll angle based on our orientation // -------------------------------------------------- void calc_nav_roll() { long angle = wrap_360(nav_bearing - dcm.yaw_sensor); bool rev = false; float roll_out; if(angle > 18000){ angle -= 18000; rev = true; } roll_out = abs(angle - 9000); roll_out = (9000.0 - roll_out) / 9000.0; roll_out = (rev) ? -roll_out : roll_out; nav_roll = (float)nav_angle * roll_out; } */