/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include "SPIDevice.h" #include #include #include #include #include "Util.h" #include "Scheduler.h" #include "Semaphores.h" #include #include "hwdef/common/stm32_util.h" #if HAL_USE_SPI == TRUE using namespace ChibiOS; extern const AP_HAL::HAL& hal; // SPI mode numbers #if defined(STM32H7) #define SPIDEV_MODE0 0 #define SPIDEV_MODE1 SPI_CFG2_CPHA #define SPIDEV_MODE2 SPI_CFG2_CPOL #define SPIDEV_MODE3 SPI_CFG2_CPOL | SPI_CFG2_CPHA #define SPI1_CLOCK STM32_SPI1CLK #define SPI2_CLOCK STM32_SPI2CLK #define SPI3_CLOCK STM32_SPI3CLK #define SPI4_CLOCK STM32_SPI4CLK #define SPI5_CLOCK STM32_SPI5CLK #define SPI6_CLOCK STM32_SPI6CLK #else // F4 and F7 #define SPIDEV_MODE0 0 #define SPIDEV_MODE1 SPI_CR1_CPHA #define SPIDEV_MODE2 SPI_CR1_CPOL #define SPIDEV_MODE3 SPI_CR1_CPOL | SPI_CR1_CPHA #define SPI1_CLOCK STM32_PCLK2 #define SPI2_CLOCK STM32_PCLK1 #define SPI3_CLOCK STM32_PCLK1 #define SPI4_CLOCK STM32_PCLK2 #define SPI5_CLOCK STM32_PCLK2 #define SPI6_CLOCK STM32_PCLK2 #endif // expected bus clock speeds static const uint32_t bus_clocks[6] = { SPI1_CLOCK, SPI2_CLOCK, SPI3_CLOCK, SPI4_CLOCK, SPI5_CLOCK, SPI6_CLOCK }; static const struct SPIDriverInfo { SPIDriver *driver; uint8_t busid; // used for device IDs in parameters uint8_t dma_channel_rx; uint8_t dma_channel_tx; ioline_t sck_line; } spi_devices[] = { HAL_SPI_BUS_LIST }; // device list comes from hwdef.dat ChibiOS::SPIDesc SPIDeviceManager::device_table[] = { HAL_SPI_DEVICE_LIST }; SPIBus::SPIBus(uint8_t _bus) : DeviceBus(APM_SPI_PRIORITY), bus(_bus) { chMtxObjectInit(&dma_lock); // allow for sharing of DMA channels with other peripherals dma_handle = new Shared_DMA(spi_devices[bus].dma_channel_rx, spi_devices[bus].dma_channel_tx, FUNCTOR_BIND_MEMBER(&SPIBus::dma_allocate, void, Shared_DMA *), FUNCTOR_BIND_MEMBER(&SPIBus::dma_deallocate, void, Shared_DMA *)); // remember the SCK line for stop_peripheral()/start_peripheral() sck_mode = palReadLineMode(spi_devices[bus].sck_line); } /* allocate DMA channel */ void SPIBus::dma_allocate(Shared_DMA *ctx) { // nothing to do as we call spiStart() on each transaction } /* deallocate DMA channel */ void SPIBus::dma_deallocate(Shared_DMA *ctx) { chMtxLock(&dma_lock); // another non-SPI peripheral wants one of our DMA channels stop_peripheral(); chMtxUnlock(&dma_lock); } SPIDevice::SPIDevice(SPIBus &_bus, SPIDesc &_device_desc) : bus(_bus) , device_desc(_device_desc) { set_device_bus(spi_devices[_bus.bus].busid); set_device_address(_device_desc.device); freq_flag_low = derive_freq_flag(device_desc.lowspeed); freq_flag_high = derive_freq_flag(device_desc.highspeed); set_speed(AP_HAL::Device::SPEED_LOW); asprintf(&pname, "SPI:%s:%u:%u", device_desc.name, (unsigned)bus.bus, (unsigned)device_desc.device); AP_HAL::SPIDevice::setup_bankselect_callback(device_desc.bank_select_cb); AP_HAL::SPIDevice::set_register_rw_callback(device_desc.register_rw_cb); //printf("SPI device %s on %u:%u at speed %u mode %u\n", // device_desc.name, // (unsigned)bus.bus, (unsigned)device_desc.device, // (unsigned)frequency, (unsigned)device_desc.mode); } SPIDevice::~SPIDevice() { //printf("SPI device %s on %u:%u closed\n", device_desc.name, // (unsigned)bus.bus, (unsigned)device_desc.device); free(pname); } SPIDriver * SPIDevice::get_driver() { return spi_devices[device_desc.bus].driver; } bool SPIDevice::set_speed(AP_HAL::Device::Speed speed) { switch (speed) { case AP_HAL::Device::SPEED_HIGH: freq_flag = freq_flag_high; break; case AP_HAL::Device::SPEED_LOW: freq_flag = freq_flag_low; break; } return true; } /* setup a bus slowdown factor for high speed mode */ void SPIDevice::set_slowdown(uint8_t slowdown) { slowdown = constrain_int16(slowdown+1, 1, 32); freq_flag_high = derive_freq_flag(device_desc.highspeed / slowdown); } /* low level transfer function */ bool SPIDevice::do_transfer(const uint8_t *send, uint8_t *recv, uint32_t len) { bool old_cs_forced = cs_forced; if (!set_chip_select(true)) { return false; } bool ret = true; #if defined(HAL_SPI_USE_POLLED) for (uint32_t i=0; ipersistent_data.spi_count++; if (send == nullptr) { spiStartReceiveI(spi_devices[device_desc.bus].driver, len, recv); } else if (recv == nullptr) { spiStartSendI(spi_devices[device_desc.bus].driver, len, send); } else { spiStartExchangeI(spi_devices[device_desc.bus].driver, len, send, recv); } // we allow SPI transfers to take a maximum of 20ms plus 32us per // byte. This covers all use cases in ArduPilot. We don't ever // expect this timeout to trigger unless there is a severe MCU // error const uint32_t timeout_us = 20000U + len * 32U; msg_t msg = osalThreadSuspendTimeoutS(&spi_devices[device_desc.bus].driver->thread, TIME_US2I(timeout_us)); osalSysUnlock(); if (msg == MSG_TIMEOUT) { ret = false; if (!hal.scheduler->in_expected_delay()) { INTERNAL_ERROR(AP_InternalError::error_t::spi_fail); } spiAbort(spi_devices[device_desc.bus].driver); } bus.bouncebuffer_finish(send, recv, len); #endif set_chip_select(old_cs_forced); return ret; } /* this pulses the clock for n bytes. The data is ignored. */ bool SPIDevice::clock_pulse(uint32_t n) { msg_t msg; const uint32_t timeout_us = 20000U + n * 32U; if (!cs_forced) { //special mode to init sdcard without cs asserted bus.semaphore.take_blocking(); acquire_bus(true, true); osalSysLock(); spiStartIgnoreI(spi_devices[device_desc.bus].driver, n); msg = osalThreadSuspendTimeoutS(&spi_devices[device_desc.bus].driver->thread, TIME_US2I(timeout_us)); osalSysUnlock(); if (msg == MSG_TIMEOUT) { spiAbort(spi_devices[device_desc.bus].driver); } acquire_bus(false, true); bus.semaphore.give(); } else { if (!bus.semaphore.check_owner()) { return false; } osalSysLock(); spiStartIgnoreI(spi_devices[device_desc.bus].driver, n); msg = osalThreadSuspendTimeoutS(&spi_devices[device_desc.bus].driver->thread, TIME_US2I(timeout_us)); osalSysUnlock(); if (msg == MSG_TIMEOUT) { spiAbort(spi_devices[device_desc.bus].driver); } } return msg != MSG_TIMEOUT; } uint32_t SPIDevice::derive_freq_flag_bus(uint8_t busid, uint32_t _frequency) { uint32_t spi_clock_freq = SPI1_CLOCK; if (busid > 0 && uint8_t(busid-1) < ARRAY_SIZE(bus_clocks)) { spi_clock_freq = bus_clocks[busid-1] / 2; } // find first divisor that brings us below the desired SPI clock uint32_t i = 0; while (spi_clock_freq > _frequency && i<7) { spi_clock_freq >>= 1; i++; } // assuming the bitrate bits are consecutive in the CR1 register, // we can just multiply by BR_0 to get the right bits for the desired // scaling #if defined(STM32H7) return (i * SPI_CFG1_MBR_0) | SPI_CFG1_DSIZE_VALUE(7); // 8 bit transfers #else return i * SPI_CR1_BR_0; #endif } uint32_t SPIDevice::derive_freq_flag(uint32_t _frequency) { uint8_t busid = spi_devices[device_desc.bus].busid; return derive_freq_flag_bus(busid, _frequency); } bool SPIDevice::transfer(const uint8_t *send, uint32_t send_len, uint8_t *recv, uint32_t recv_len) { if (!bus.semaphore.check_owner()) { return false; } if ((send_len == recv_len && send == recv) || !send || !recv) { // simplest cases, needed for DMA return do_transfer(send, recv, recv_len?recv_len:send_len); } uint8_t buf[send_len+recv_len]; if (send_len > 0) { memcpy(buf, send, send_len); } if (recv_len > 0) { memset(&buf[send_len], 0, recv_len); } bool ret = do_transfer(buf, buf, send_len+recv_len); if (ret && recv_len > 0) { memcpy(recv, &buf[send_len], recv_len); } return ret; } bool SPIDevice::transfer_fullduplex(const uint8_t *send, uint8_t *recv, uint32_t len) { if (!bus.semaphore.check_owner()) { return false; } uint8_t buf[len]; memcpy(buf, send, len); bool ret = do_transfer(buf, buf, len); if (ret) { memcpy(recv, buf, len); } return ret; } AP_HAL::Semaphore *SPIDevice::get_semaphore() { return &bus.semaphore; } AP_HAL::Device::PeriodicHandle SPIDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return bus.register_periodic_callback(period_usec, cb, this); } bool SPIDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec) { return bus.adjust_timer(h, period_usec); } /* stop the SPI peripheral and set the SCK line as a GPIO to prevent the clock line floating while we are waiting for the next spiStart() */ void SPIBus::stop_peripheral(void) { if (!spi_started) { return; } const auto &sbus = spi_devices[bus]; if (spi_mode == SPIDEV_MODE0 || spi_mode == SPIDEV_MODE1) { // Clock polarity is 0, so we need to set the clock line low before spi reset palClearLine(sbus.sck_line); } else { // Clock polarity is 1, so we need to set the clock line high before spi reset palSetLine(sbus.sck_line); } palSetLineMode(sbus.sck_line, PAL_MODE_OUTPUT_PUSHPULL); spiStop(sbus.driver); spi_started = false; } /* start the SPI peripheral and restore the IO mode of the SCK line */ void SPIBus::start_peripheral(void) { if (spi_started) { return; } /* start driver and setup transfer parameters */ spiStart(spi_devices[bus].driver, &spicfg); // restore sck pin mode from stop_peripheral() palSetLineMode(spi_devices[bus].sck_line, sck_mode); spi_started = true; } /* used to acquire bus and (optionally) assert cs */ bool SPIDevice::acquire_bus(bool set, bool skip_cs) { if (!bus.semaphore.check_owner()) { return false; } if (set && cs_forced) { return true; } if (!set && !cs_forced) { return false; } if (!set && cs_forced) { if(!skip_cs) { spiUnselectI(spi_devices[device_desc.bus].driver); /* Slave Select de-assertion. */ } spiReleaseBus(spi_devices[device_desc.bus].driver); /* Ownership release. */ cs_forced = false; bus.dma_handle->unlock(); } else { bus.dma_handle->lock(); spiAcquireBus(spi_devices[device_desc.bus].driver); /* Acquire ownership of the bus. */ bus.spicfg.end_cb = nullptr; bus.spicfg.ssport = PAL_PORT(device_desc.pal_line); bus.spicfg.sspad = PAL_PAD(device_desc.pal_line); #if defined(STM32H7) bus.spicfg.cfg1 = freq_flag; bus.spicfg.cfg2 = device_desc.mode; if (bus.spicfg.dummytx == nullptr) { bus.spicfg.dummytx = (uint32_t *)malloc_dma(4); memset(bus.spicfg.dummytx, 0xFF, 4); } if (bus.spicfg.dummyrx == nullptr) { bus.spicfg.dummyrx = (uint32_t *)malloc_dma(4); } #else bus.spicfg.cr1 = (uint16_t)(freq_flag | device_desc.mode); bus.spicfg.cr2 = 0; #endif bus.spi_mode = device_desc.mode; bus.stop_peripheral(); bus.start_peripheral(); if(!skip_cs) { spiSelectI(spi_devices[device_desc.bus].driver); /* Slave Select assertion. */ } cs_forced = true; } return true; } /* allow for control of SPI chip select pin */ bool SPIDevice::set_chip_select(bool set) { return acquire_bus(set, false); } /* return a SPIDevice given a string device name */ AP_HAL::OwnPtr SPIDeviceManager::get_device(const char *name) { /* Find the bus description in the table */ uint8_t i; for (i = 0; i(nullptr); } SPIDesc &desc = device_table[i]; // find the bus SPIBus *busp; for (busp = buses; busp; busp = (SPIBus *)busp->next) { if (busp->bus == desc.bus) { break; } } if (busp == nullptr) { // create a new one busp = new SPIBus(desc.bus); if (busp == nullptr) { return nullptr; } busp->next = buses; busp->bus = desc.bus; buses = busp; } return AP_HAL::OwnPtr(new SPIDevice(*busp, desc)); } void SPIDeviceManager::set_register_rw_callback(const char* name, AP_HAL::Device::RegisterRWCb cb) { /* Find the bus description in the table */ uint8_t i; for (i = 0; idelay(1000); DEV_PRINTF("Waiting %u\n", (unsigned)AP_HAL::millis()); } DEV_PRINTF("CLOCKS=\n"); for (uint8_t i=0; imalloc_type(len, AP_HAL::Util::MEM_DMA_SAFE); uint8_t *buf2 = (uint8_t *)hal.util->malloc_type(len, AP_HAL::Util::MEM_DMA_SAFE); for (uint8_t i=0; ithread, chTimeMS2I(100)); chSysUnlock(); if (msg == MSG_TIMEOUT) { spiAbort(spi_devices[i].driver); DEV_PRINTF("SPI[%u] FAIL %p %p\n", spi_devices[i].busid, buf1, buf2); spiStop(spi_devices[i].driver); spiReleaseBus(spi_devices[i].driver); continue; } uint32_t t1 = AP_HAL::micros(); spiStop(spi_devices[i].driver); spiReleaseBus(spi_devices[i].driver); DEV_PRINTF("SPI[%u] clock=%u\n", unsigned(spi_devices[i].busid), unsigned(1000000ULL * len * 8ULL / uint64_t(t1 - t0))); } hal.util->free_type(buf1, len, AP_HAL::Util::MEM_DMA_SAFE); hal.util->free_type(buf2, len, AP_HAL::Util::MEM_DMA_SAFE); } #endif // HAL_SPI_CHECK_CLOCK_FREQ #endif // HAL_USE_SPI