/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ /* Driver by Andrew Tridgell, Nov 2016 */ #include "AP_Compass_AK09916.h" #include #include #include #include #include #include #include extern const AP_HAL::HAL &hal; #define REG_COMPANY_ID 0x00 #define REG_DEVICE_ID 0x01 #define REG_ST1 0x10 #define REG_HXL 0x11 #define REG_HXH 0x12 #define REG_HYL 0x13 #define REG_HYH 0x14 #define REG_HZL 0x15 #define REG_HZH 0x16 #define REG_TMPS 0x17 #define REG_ST2 0x18 #define REG_CNTL1 0x30 #define REG_CNTL2 0x31 #define REG_CNTL3 0x32 #define REG_ICM_WHOAMI 0x00 #define REG_ICM_PWR_MGMT_1 0x06 #define REG_ICM_INT_PIN_CFG 0x0f #define ICM_WHOAMI_VAL 0xEA #define AK09916_Device_ID 0x09 #define AK09916_MILLIGAUSS_SCALE 10.0f extern const AP_HAL::HAL &hal; struct PACKED sample_regs { uint8_t st1; int16_t val[3]; uint8_t tmps; uint8_t st2; }; AP_Compass_AK09916::AP_Compass_AK09916(AP_AK09916_BusDriver *bus, bool force_external, enum Rotation rotation) : _bus(bus) , _force_external(force_external) , _rotation(rotation) { } AP_Compass_AK09916::~AP_Compass_AK09916() { delete _bus; } AP_Compass_Backend *AP_Compass_AK09916::probe(AP_HAL::OwnPtr dev, bool force_external, enum Rotation rotation) { if (!dev) { return nullptr; } AP_AK09916_BusDriver *bus = new AP_AK09916_BusDriver_HALDevice(std::move(dev)); if (!bus) { return nullptr; } AP_Compass_AK09916 *sensor = new AP_Compass_AK09916(bus, force_external, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948(AP_HAL::OwnPtr dev, AP_HAL::OwnPtr dev_icm, bool force_external, enum Rotation rotation) { if (!dev || !dev_icm) { return nullptr; } if (!dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return nullptr; } /* Allow ICM20x48 to shortcut auxiliary bus and host bus */ uint8_t rval; uint16_t whoami; uint8_t retries = 5; if (!dev_icm->read_registers(REG_ICM_WHOAMI, &rval, 1) || rval != ICM_WHOAMI_VAL) { // not an ICM_WHOAMI goto fail; } do { // reset then bring sensor out of sleep mode if (!dev_icm->write_register(REG_ICM_PWR_MGMT_1, 0x80)) { goto fail; } hal.scheduler->delay(10); if (!dev_icm->write_register(REG_ICM_PWR_MGMT_1, 0x00)) { goto fail; } hal.scheduler->delay(10); // see if ICM20948 is sleeping if (!dev_icm->read_registers(REG_ICM_PWR_MGMT_1, &rval, 1)) { goto fail; } if ((rval & 0x40) == 0) { break; } } while (retries--); if (rval & 0x40) { // it didn't come out of sleep goto fail; } // initially force i2c bypass off dev_icm->write_register(REG_ICM_INT_PIN_CFG, 0x00); hal.scheduler->delay(1); // now check if a AK09916 shows up on the bus. If it does then // we have both a real AK09916 and a ICM20948 with an embedded // AK09916. In that case we will fail the driver load and use // the main AK09916 driver if (dev->read_registers(REG_COMPANY_ID, (uint8_t *)&whoami, 2)) { // a device is replying on the AK09916 I2C address, don't // load the ICM20948 hal.console->printf("ICM20948: AK09916 bus conflict\n"); goto fail; } // now force bypass on dev_icm->write_register(REG_ICM_INT_PIN_CFG, 0x02); hal.scheduler->delay(1); dev->get_semaphore()->give(); return probe(std::move(dev), force_external, rotation); fail: dev->get_semaphore()->give(); return nullptr; } AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948(uint8_t inv2_instance, enum Rotation rotation) { AP_InertialSensor &ins = AP::ins(); AP_AK09916_BusDriver *bus = new AP_AK09916_BusDriver_Auxiliary(ins, HAL_INS_INV2_SPI, inv2_instance, HAL_COMPASS_AK09916_I2C_ADDR); if (!bus) { return nullptr; } AP_Compass_AK09916 *sensor = new AP_Compass_AK09916(bus, false, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_AK09916::init() { AP_HAL::Semaphore *bus_sem = _bus->get_semaphore(); if (!bus_sem || !_bus->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf("AK09916: Unable to get bus semaphore\n"); return false; } if (!_bus->configure()) { hal.console->printf("AK09916: Could not configure the bus\n"); goto fail; } if (!_reset()) { hal.console->printf("AK09916: Reset Failed\n"); goto fail; } if (!_check_id()) { hal.console->printf("AK09916: Wrong id\n"); goto fail; } if (!_setup_mode()) { hal.console->printf("AK09916: Could not setup mode\n"); goto fail; } if (!_bus->start_measurements()) { hal.console->printf("AK09916: Could not start measurements\n"); goto fail; } _initialized = true; /* register the compass instance in the frontend */ _compass_instance = register_compass(); if (_force_external) { set_external(_compass_instance, true); } set_rotation(_compass_instance, _rotation); _bus->set_device_type(DEVTYPE_AK09916); set_dev_id(_compass_instance, _bus->get_bus_id()); bus_sem->give(); _bus->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_AK09916::_update, void)); return true; fail: bus_sem->give(); return false; } void AP_Compass_AK09916::read() { if (!_initialized) { return; } drain_accumulated_samples(_compass_instance); } void AP_Compass_AK09916::_make_adc_sensitivity_adjustment(Vector3f& field) const { static const float ADC_16BIT_RESOLUTION = 0.15f; field *= ADC_16BIT_RESOLUTION; } void AP_Compass_AK09916::_update() { struct sample_regs regs = {0}; Vector3f raw_field; if (!_bus->block_read(REG_ST1, (uint8_t *) ®s, sizeof(regs))) { return; } if (!(regs.st1 & 0x01)) { return; } /* Check for overflow. See AK09916's datasheet*/ if ((regs.st2 & 0x08)) { return; } raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]); if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) { return; } _make_adc_sensitivity_adjustment(raw_field); raw_field *= AK09916_MILLIGAUSS_SCALE; accumulate_sample(raw_field, _compass_instance, 10); } bool AP_Compass_AK09916::_check_id() { for (int i = 0; i < 5; i++) { uint8_t deviceid = 0; /* Read AK09916's id */ if (_bus->register_read(REG_DEVICE_ID, &deviceid) && deviceid == AK09916_Device_ID) { return true; } } return false; } bool AP_Compass_AK09916::_setup_mode() { return _bus->register_write(REG_CNTL2, 0x08); //Continuous Mode 2 } bool AP_Compass_AK09916::_reset() { return _bus->register_write(REG_CNTL3, 0x01); //Soft Reset } /* AP_HAL::I2CDevice implementation of the AK09916 */ AP_AK09916_BusDriver_HALDevice::AP_AK09916_BusDriver_HALDevice(AP_HAL::OwnPtr dev) : _dev(std::move(dev)) { } bool AP_AK09916_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { return _dev->read_registers(reg, buf, size); } bool AP_AK09916_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val) { return _dev->read_registers(reg, val, 1); } bool AP_AK09916_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val) { return _dev->write_register(reg, val); } AP_HAL::Semaphore *AP_AK09916_BusDriver_HALDevice::get_semaphore() { return _dev->get_semaphore(); } AP_HAL::Device::PeriodicHandle AP_AK09916_BusDriver_HALDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _dev->register_periodic_callback(period_usec, cb); } /* AK09916 on an auxiliary bus of IMU driver */ AP_AK09916_BusDriver_Auxiliary::AP_AK09916_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id, uint8_t backend_instance, uint8_t addr) { /* * Only initialize members. Fails are handled by configure or while * getting the semaphore */ _bus = ins.get_auxiliary_bus(backend_id, backend_instance); if (!_bus) { return; } _slave = _bus->request_next_slave(addr); } AP_AK09916_BusDriver_Auxiliary::~AP_AK09916_BusDriver_Auxiliary() { /* After started it's owned by AuxiliaryBus */ if (!_started) { delete _slave; } } bool AP_AK09916_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { if (_started) { /* * We can only read a block when reading the block of sample values - * calling with any other value is a mistake */ assert(reg == REG_ST1); int n = _slave->read(buf); return n == static_cast(size); } int r = _slave->passthrough_read(reg, buf, size); return r > 0 && static_cast(r) == size; } bool AP_AK09916_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val) { return _slave->passthrough_read(reg, val, 1) == 1; } bool AP_AK09916_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val) { return _slave->passthrough_write(reg, val) == 1; } AP_HAL::Semaphore *AP_AK09916_BusDriver_Auxiliary::get_semaphore() { return _bus ? _bus->get_semaphore() : nullptr; } bool AP_AK09916_BusDriver_Auxiliary::configure() { if (!_bus || !_slave) { return false; } return true; } bool AP_AK09916_BusDriver_Auxiliary::start_measurements() { if (_bus->register_periodic_read(_slave, REG_ST1, sizeof(sample_regs)) < 0) { return false; } _started = true; return true; } AP_HAL::Device::PeriodicHandle AP_AK09916_BusDriver_Auxiliary::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _bus->register_periodic_callback(period_usec, cb); } // set device type within a device class void AP_AK09916_BusDriver_Auxiliary::set_device_type(uint8_t devtype) { _bus->set_device_type(devtype); } // return 24 bit bus identifier uint32_t AP_AK09916_BusDriver_Auxiliary::get_bus_id(void) const { return _bus->get_bus_id(); }