// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*- /* APM_Compass.cpp - Arduino Library for HMC5843 I2C Magnetometer Code by Jordi Muņoz and Jose Julio. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Sensor is conected to I2C port Sensor is initialized in Continuos mode (10Hz) Variables: Heading : Magnetic heading Heading_X : Magnetic heading X component Heading_Y : Magnetic heading Y component Mag_X : Raw X axis magnetometer data Mag_Y : Raw Y axis magnetometer data Mag_Z : Raw Z axis magnetometer data lastUpdate : the time of the last successful reading Methods: Init() : Initialization of I2C and sensor Read() : Read Sensor data Calculate(float roll, float pitch) : Calculate tilt adjusted heading SetOrientation(const Matrix3f &rotationMatrix) : Set orientation of compass SetOffsets(int x, int y, int z) : Set adjustments for HardIron disturbances SetDeclination(float radians) : Set heading adjustment between true north and magnetic north To do : code optimization Mount position : UPDATED Big capacitor pointing backward, connector forward */ extern "C" { // AVR LibC Includes #include #include "WConstants.h" } #include #include "APM_Compass.h" #define CompassAddress 0x1E #define ConfigRegA 0x00 #define ConfigRegB 0x01 #define MagGain 0x20 #define PositiveBiasConfig 0x11 #define NegativeBiasConfig 0x12 #define NormalOperation 0x10 #define ModeRegister 0x02 #define ContinuousConversion 0x00 #define SingleConversion 0x01 // Constructors //////////////////////////////////////////////////////////////// APM_Compass_Class::APM_Compass_Class() : orientation(0), declination(0.0) { // mag x y z offset initialisation offset[0] = 0; offset[1] = 0; offset[2] = 0; // initialise orientation matrix orientationMatrix = ROTATION_NONE; } // Public Methods ////////////////////////////////////////////////////////////// bool APM_Compass_Class::Init(int initialiseWireLib) { unsigned long currentTime = millis(); // record current time int numAttempts = 0; int success = 0; if( initialiseWireLib != 0 ) Wire.begin(); delay(10); // calibration initialisation calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; while( success == 0 && numAttempts < 5 ) { // record number of attempts at initialisation numAttempts++; // force positiveBias (compass should return 715 for all channels) Wire.beginTransmission(CompassAddress); Wire.send(ConfigRegA); Wire.send(PositiveBiasConfig); if (0 != Wire.endTransmission()) continue; // compass not responding on the bus delay(50); // set gains Wire.beginTransmission(CompassAddress); Wire.send(ConfigRegB); Wire.send(MagGain); Wire.endTransmission(); delay(10); Wire.beginTransmission(CompassAddress); Wire.send(ModeRegister); Wire.send(SingleConversion); Wire.endTransmission(); delay(10); // read values from the compass Read(); delay(10); // calibrate if( abs(Mag_X) > 500 && abs(Mag_X) < 1000 && abs(Mag_Y) > 500 && abs(Mag_Y) < 1000 && abs(Mag_Z) > 500 && abs(Mag_Z) < 1000) { calibration[0] = fabs(715.0 / Mag_X); calibration[1] = fabs(715.0 / Mag_Y); calibration[2] = fabs(715.0 / Mag_Z); // mark success success = 1; } // leave test mode Wire.beginTransmission(CompassAddress); Wire.send(ConfigRegA); Wire.send(NormalOperation); Wire.endTransmission(); delay(50); Wire.beginTransmission(CompassAddress); Wire.send(ModeRegister); Wire.send(ContinuousConversion); // Set continuous mode (default to 10Hz) Wire.endTransmission(); // End transmission delay(50); } return(success); } // Read Sensor data void APM_Compass_Class::Read() { int i = 0; byte buff[6]; Wire.beginTransmission(CompassAddress); Wire.send(0x03); //sends address to read from Wire.endTransmission(); //end transmission //Wire.beginTransmission(CompassAddress); Wire.requestFrom(CompassAddress, 6); // request 6 bytes from device while(Wire.available()) { buff[i] = Wire.receive(); // receive one byte i++; } Wire.endTransmission(); //end transmission if (i==6) // All bytes received? { // MSB byte first, then LSB, X,Y,Z Mag_X = -((((int)buff[0]) << 8) | buff[1]) * calibration[0]; // X axis Mag_Y = ((((int)buff[2]) << 8) | buff[3]) * calibration[1]; // Y axis Mag_Z = -((((int)buff[4]) << 8) | buff[5]) * calibration[2]; // Z axis lastUpdate = millis(); // record time of update } } void APM_Compass_Class::Calculate(float roll, float pitch) { float Head_X; float Head_Y; float cos_roll; float sin_roll; float cos_pitch; float sin_pitch; Vector3f rotMagVec; cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM? sin_roll = sin(roll); cos_pitch = cos(pitch); sin_pitch = sin(pitch); // rotate the magnetometer values depending upon orientation if( orientation == 0 ) rotMagVec = Vector3f(Mag_X+offset[0],Mag_Y+offset[1],Mag_Z+offset[2]); else rotMagVec = orientationMatrix*Vector3f(Mag_X+offset[0],Mag_Y+offset[1],Mag_Z+offset[2]); // Tilt compensated Magnetic field X component: Head_X = rotMagVec.x*cos_pitch+rotMagVec.y*sin_roll*sin_pitch+rotMagVec.z*cos_roll*sin_pitch; // Tilt compensated Magnetic field Y component: Head_Y = rotMagVec.y*cos_roll-rotMagVec.z*sin_roll; // Magnetic Heading Heading = atan2(-Head_Y,Head_X); // Declination correction (if supplied) if( declination != 0.0 ) { Heading = Heading + declination; if (Heading > M_PI) // Angle normalization (-180 deg, 180 deg) Heading -= (2.0 * M_PI); else if (Heading < -M_PI) Heading += (2.0 * M_PI); } // Optimization for external DCM use. Calculate normalized components Heading_X = cos(Heading); Heading_Y = sin(Heading); } void APM_Compass_Class::SetOrientation(const Matrix3f &rotationMatrix) { orientationMatrix = rotationMatrix; if( orientationMatrix == ROTATION_NONE ) orientation = 0; else orientation = 1; } void APM_Compass_Class::SetOffsets(int x, int y, int z) { offset[0] = x; offset[1] = y; offset[2] = z; } void APM_Compass_Class::SetDeclination(float radians) { declination = radians; } // Constructors //////////////////////////////////////////////////////////////// APM_Compass_HIL_Class::APM_Compass_HIL_Class() : orientation(0), declination(0.0) { // mag x y z offset initialisation offset[0] = 0; offset[1] = 0; offset[2] = 0; // initialise orientation matrix orientationMatrix = ROTATION_NONE; } // Public Methods ////////////////////////////////////////////////////////////// bool APM_Compass_HIL_Class::Init(int initialiseWireLib) { unsigned long currentTime = millis(); // record current time int numAttempts = 0; int success = 0; // calibration initialisation calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; while( success == 0 && numAttempts < 5 ) { // record number of attempts at initialisation numAttempts++; // read values from the compass Read(); delay(10); // calibrate if( abs(Mag_X) > 500 && abs(Mag_X) < 1000 && abs(Mag_Y) > 500 && abs(Mag_Y) < 1000 && abs(Mag_Z) > 500 && abs(Mag_Z) < 1000) { calibration[0] = fabs(715.0 / Mag_X); calibration[1] = fabs(715.0 / Mag_Y); calibration[2] = fabs(715.0 / Mag_Z); // mark success success = 1; } } return(success); } // Read Sensor data void APM_Compass_HIL_Class::Read() { // values set by setHIL function } void APM_Compass_HIL_Class::Calculate(float roll, float pitch) { float Head_X; float Head_Y; float cos_roll; float sin_roll; float cos_pitch; float sin_pitch; Vector3f rotMagVec; cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM? sin_roll = sin(roll); cos_pitch = cos(pitch); sin_pitch = sin(pitch); // rotate the magnetometer values depending upon orientation if( orientation == 0 ) rotMagVec = Vector3f(Mag_X+offset[0],Mag_Y+offset[1],Mag_Z+offset[2]); else rotMagVec = orientationMatrix*Vector3f(Mag_X+offset[0],Mag_Y+offset[1],Mag_Z+offset[2]); // Tilt compensated Magnetic field X component: Head_X = rotMagVec.x*cos_pitch+rotMagVec.y*sin_roll*sin_pitch+rotMagVec.z*cos_roll*sin_pitch; // Tilt compensated Magnetic field Y component: Head_Y = rotMagVec.y*cos_roll-rotMagVec.z*sin_roll; // Magnetic Heading Heading = atan2(-Head_Y,Head_X); // Declination correction (if supplied) if( declination != 0.0 ) { Heading = Heading + declination; if (Heading > M_PI) // Angle normalization (-180 deg, 180 deg) Heading -= (2.0 * M_PI); else if (Heading < -M_PI) Heading += (2.0 * M_PI); } // Optimization for external DCM use. Calculate normalized components Heading_X = cos(Heading); Heading_Y = sin(Heading); } void APM_Compass_HIL_Class::SetOrientation(const Matrix3f &rotationMatrix) { orientationMatrix = rotationMatrix; if( orientationMatrix == ROTATION_NONE ) orientation = 0; else orientation = 1; } void APM_Compass_HIL_Class::SetOffsets(int x, int y, int z) { offset[0] = x; offset[1] = y; offset[2] = z; } void APM_Compass_HIL_Class::SetDeclination(float radians) { declination = radians; } void APM_Compass_HIL_Class::setHIL(float _Mag_X, float _Mag_Y, float _Mag_Z) { // TODO: map floats to raw Mag_X = _Mag_X; Mag_Y = _Mag_Y; Mag_Z = _Mag_Z; }