/* AP_Quaternion code, based on quaternion code from Jeb Madgwick See http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf adapted to APM by Andrew Tridgell This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include #include #define ToRad(x) (x*0.01745329252) // *pi/180 #define ToDeg(x) (x*57.2957795131) // *180/pi // this is the speed in cm/s above which we first get a yaw lock with // the GPS #define GPS_SPEED_MIN 300 // this is the speed in cm/s at which we stop using drift correction // from the GPS and wait for the ground speed to get above GPS_SPEED_MIN #define GPS_SPEED_RESET 100 void AP_Quaternion::set_compass(Compass *compass) { _compass = compass; } // Function to compute one quaternion iteration without magnetometer void AP_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel) { // Local system variables float norm; // vector norm float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion derrivative from gyroscopes elements float f_1, f_2, f_3; // objective function elements float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error // Axulirary variables to avoid reapeated calcualtions float halfSEq_1 = 0.5f * SEq_1; float halfSEq_2 = 0.5f * SEq_2; float halfSEq_3 = 0.5f * SEq_3; float halfSEq_4 = 0.5f * SEq_4; float twoSEq_1 = 2.0f * SEq_1; float twoSEq_2 = 2.0f * SEq_2; float twoSEq_3 = 2.0f * SEq_3; // estimated direction of the gyroscope error (radians) Vector3f w_err; // normalise accelerometer vector accel.normalize(); // Compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication J_12or23 = 2.0f * SEq_4; J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication J_14or21 = twoSEq_2; J_32 = 2.0f * J_14or21; // negated in matrix multiplication J_33 = 2.0f * J_11or24; // negated in matrix multiplication // Compute the gradient (matrix multiplication) SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1; SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3; SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1; SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2; // Normalise the gradient norm = 1.0/sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); if (!isinf(norm)) { SEqHatDot_1 *= norm; SEqHatDot_2 *= norm; SEqHatDot_3 *= norm; SEqHatDot_4 *= norm; } // Compute the quaternion derrivative measured by gyroscopes SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; // Compute then integrate the estimated quaternion derrivative SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; // Normalise quaternion norm = 1.0/sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); if (!isinf(norm)) { SEq_1 *= norm; SEq_2 *= norm; SEq_3 *= norm; SEq_4 *= norm; } } // Function to compute one quaternion iteration including magnetometer void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag) { // local system variables float norm; // vector norm float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; // float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error // computed flux in the earth frame Vector3f flux; // estimated direction of the gyroscope error (radians) Vector3f w_err; // normalise accelerometer vector accel.normalize(); // normalise the magnetometer measurement mag.normalize(); // auxiliary variables to avoid repeated calculations float halfSEq_1 = 0.5f * SEq_1; float halfSEq_2 = 0.5f * SEq_2; float halfSEq_3 = 0.5f * SEq_3; float halfSEq_4 = 0.5f * SEq_4; float twoSEq_1 = 2.0f * SEq_1; float twoSEq_2 = 2.0f * SEq_2; float twoSEq_3 = 2.0f * SEq_3; float twoSEq_4 = 2.0f * SEq_4; float twob_x = 2.0f * b_x; float twob_z = 2.0f * b_z; float twob_xSEq_1 = 2.0f * b_x * SEq_1; float twob_xSEq_2 = 2.0f * b_x * SEq_2; float twob_xSEq_3 = 2.0f * b_x * SEq_3; float twob_xSEq_4 = 2.0f * b_x * SEq_4; float twob_zSEq_1 = 2.0f * b_z * SEq_1; float twob_zSEq_2 = 2.0f * b_z * SEq_2; float twob_zSEq_3 = 2.0f * b_z * SEq_3; float twob_zSEq_4 = 2.0f * b_z * SEq_4; float SEq_1SEq_2; float SEq_1SEq_3 = SEq_1 * SEq_3; float SEq_1SEq_4; float SEq_2SEq_3; float SEq_2SEq_4 = SEq_2 * SEq_4; float SEq_3SEq_4; Vector3f twom = mag * 2.0; // compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - mag.x; f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - mag.y; f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - mag.z; J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication J_12or23 = 2.0f * SEq_4; J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication J_14or21 = twoSEq_2; J_32 = 2.0f * J_14or21; // negated in matrix multiplication J_33 = 2.0f * J_11or24; // negated in matrix multiplication J_41 = twob_zSEq_3; // negated in matrix multiplication J_42 = twob_zSEq_4; J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication J_52 = twob_xSEq_3 + twob_zSEq_1; J_53 = twob_xSEq_2 + twob_zSEq_4; J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication J_61 = twob_xSEq_3; J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2; J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3; J_64 = twob_xSEq_2; // compute the gradient (matrix multiplication) SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 - J_41 * f_4 - J_51 * f_5 + J_61 * f_6; SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6; SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6; SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6; // normalise the gradient to estimate direction of the gyroscope error norm = 1.0 / sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); SEqHatDot_1 *= norm; SEqHatDot_2 *= norm; SEqHatDot_3 *= norm; SEqHatDot_4 *= norm; // compute angular estimated direction of the gyroscope error w_err.x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3; w_err.y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2; w_err.z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1; // keep track of the error rates _error_rp_sum += 0.5*(fabs(w_err.x) + fabs(w_err.y)); _error_yaw_sum += fabs(w_err.z); _error_rp_count++; _error_yaw_count++; // compute and remove the gyroscope baises gyro_bias += w_err * (deltat * zeta); gyro -= gyro_bias; // compute the quaternion rate measured by gyroscopes SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; // compute then integrate the estimated quaternion rate SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; // normalise quaternion norm = 1.0/sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); if (!isinf(norm)) { SEq_1 *= norm; SEq_2 *= norm; SEq_3 *= norm; SEq_4 *= norm; } // compute flux in the earth frame // recompute axulirary variables SEq_1SEq_2 = SEq_1 * SEq_2; SEq_1SEq_3 = SEq_1 * SEq_3; SEq_1SEq_4 = SEq_1 * SEq_4; SEq_3SEq_4 = SEq_3 * SEq_4; SEq_2SEq_3 = SEq_2 * SEq_3; SEq_2SEq_4 = SEq_2 * SEq_4; flux.x = twom.x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom.y * (SEq_2SEq_3 - SEq_1SEq_4) + twom.z * (SEq_2SEq_4 + SEq_1SEq_3); flux.y = twom.x * (SEq_2SEq_3 + SEq_1SEq_4) + twom.y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom.z * (SEq_3SEq_4 - SEq_1SEq_2); flux.z = twom.x * (SEq_2SEq_4 - SEq_1SEq_3) + twom.y * (SEq_3SEq_4 + SEq_1SEq_2) + twom.z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3); // normalise the flux vector to have only components in the x and z b_x = sqrt((flux.x * flux.x) + (flux.y * flux.y)); b_z = flux.z; } // Function to compute one quaternion iteration void AP_Quaternion::update(void) { Vector3f gyro, accel; float deltat; _imu->update(); deltat = _imu->get_delta_time(); if (deltat > 1.0) { // if we stop updating for 1s, we should discard this // input data. This can happen if you are running the // code under a debugger, and using this data point // will just throw off your attitude by a huge amount return; } // get current IMU state gyro = _imu->get_gyro(); accel = _imu->get_accel(); // keep a smoothed gyro vector for centripetal and reporting // to mainline code _gyro_smoothed = (_gyro_smoothed * 0.95) + (gyro * 0.05); // Quaternion code uses opposite x and y gyro sense gyro.x = -gyro.x; gyro.y = -gyro.y; if (_centripetal && _gps && _gps->status() == GPS::GPS_OK) { // compensate for centripetal acceleration float veloc; veloc = _gps->ground_speed / 100; accel.y -= _gyro_smoothed.z * veloc; accel.z += _gyro_smoothed.y * veloc; } // Quaternion code uses opposite z accel accel.z = -accel.z; if (_compass == NULL) { update_IMU(deltat, gyro, accel); } else { // mag.z is reversed in quaternion code Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, - _compass->mag_z); update_MARG(deltat, gyro, accel, mag); } // compute the Eulers float test = (SEq_1*SEq_3 - SEq_4*SEq_2); const float singularity = 0.499; // 86.3 degrees? if (test > singularity) { // singularity at south pole // this one is ok.. yaw = 2.0 * atan2(SEq_4, SEq_1); pitch = ToRad(-90.0); roll = 0.0; } else if (test < -singularity) { // singularity at north pole // this one is invalid :( .. fix it. yaw = -2.0 * atan2(SEq_4, SEq_1); pitch = ToRad(90.0); roll = 0.0; } else { roll = -(atan2(2.0*(SEq_1*SEq_2 + SEq_3*SEq_4), 1 - 2.0*(SEq_2*SEq_2 + SEq_3*SEq_3))); pitch = -safe_asin(2.0*test); yaw = atan2(2.0*(SEq_1*SEq_4 + SEq_2*SEq_3), 1 - 2.0*(SEq_3*SEq_3 + SEq_4*SEq_4)); } if (_compass != NULL) { yaw += _compass->get_declination(); } // and integer Eulers roll_sensor = 100 * ToDeg(roll); pitch_sensor = 100 * ToDeg(pitch); yaw_sensor = 100 * ToDeg(yaw); if (yaw_sensor < 0) { yaw_sensor += 36000; } } // average error in roll/pitch since last call float AP_Quaternion::get_error_rp(void) { float ret; if (_error_rp_count == 0) { return 0; } ret = _error_rp_sum / _error_rp_count; _error_rp_sum = 0; _error_rp_count = 0; return ret; } // average error in yaw since last call float AP_Quaternion::get_error_yaw(void) { float ret; if (_error_yaw_count == 0) { return 0; } ret = _error_yaw_sum / _error_yaw_count; _error_yaw_sum = 0; _error_yaw_count = 0; return ret; }