/*
Please contribute your ideas! See https://dev.ardupilot.org for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#define FLASHSTORAGE_DEBUG 0
#if FLASHSTORAGE_DEBUG
#define debug(fmt, args...) do { printf(fmt, ##args); } while(0)
#else
#define debug(fmt, args...) do { } while(0)
#endif
// constructor.
AP_FlashStorage::AP_FlashStorage(uint8_t *_mem_buffer,
uint32_t _flash_sector_size,
FlashWrite _flash_write,
FlashRead _flash_read,
FlashErase _flash_erase,
FlashEraseOK _flash_erase_ok) :
mem_buffer(_mem_buffer),
flash_sector_size(_flash_sector_size),
flash_write(_flash_write),
flash_read(_flash_read),
flash_erase(_flash_erase),
flash_erase_ok(_flash_erase_ok) {}
// initialise storage
bool AP_FlashStorage::init(void)
{
debug("running init()\n");
// start with empty memory buffer
memset(mem_buffer, 0, storage_size);
// find state of sectors
struct sector_header header[2];
// read headers and possibly initialise if bad signature
for (uint8_t i=0; i<2; i++) {
if (!flash_read(i, 0, (uint8_t *)&header[i], sizeof(header[i]))) {
return false;
}
bool bad_header = !header[i].signature_ok();
enum SectorState state = header[i].get_state();
if (state != SECTOR_STATE_AVAILABLE &&
state != SECTOR_STATE_IN_USE &&
state != SECTOR_STATE_FULL) {
bad_header = true;
}
// initialise if bad header
if (bad_header) {
return erase_all();
}
}
// work out the first sector to read from using sector states
enum SectorState states[2] {header[0].get_state(), header[1].get_state()};
uint8_t first_sector;
if (states[0] == states[1]) {
if (states[0] != SECTOR_STATE_AVAILABLE) {
return erase_all();
}
first_sector = 0;
} else if (states[0] == SECTOR_STATE_FULL) {
first_sector = 0;
} else if (states[1] == SECTOR_STATE_FULL) {
first_sector = 1;
} else if (states[0] == SECTOR_STATE_IN_USE) {
first_sector = 0;
} else if (states[1] == SECTOR_STATE_IN_USE) {
first_sector = 1;
} else {
// doesn't matter which is first
first_sector = 0;
}
// load data from any current sectors
for (uint8_t i=0; i<2; i++) {
uint8_t sector = (first_sector + i) & 1;
if (states[sector] == SECTOR_STATE_IN_USE ||
states[sector] == SECTOR_STATE_FULL) {
if (!load_sector(sector)) {
return erase_all();
}
}
}
// clear any write error
write_error = false;
reserved_space = 0;
// if the first sector is full then write out all data so we can erase it
if (states[first_sector] == SECTOR_STATE_FULL) {
current_sector = first_sector ^ 1;
if (!write_all()) {
return erase_all();
}
}
// erase any sectors marked full
for (uint8_t i=0; i<2; i++) {
if (states[i] == SECTOR_STATE_FULL) {
if (!erase_sector(i, true)) {
return false;
}
}
}
reserved_space = 0;
// ready to use
return true;
}
// switch full sector - should only be called when safe to have CPU
// offline for considerable periods as an erase will be needed
bool AP_FlashStorage::switch_full_sector(void)
{
debug("running switch_full_sector()\n");
if (in_switch_full_sector) {
INTERNAL_ERROR(AP_InternalError::error_t::switch_full_sector_recursion);
return false;
}
in_switch_full_sector = true;
bool ret = protected_switch_full_sector();
in_switch_full_sector = false;
return ret;
}
// protected_switch_full_sector is protected by switch_full_sector to
// avoid an infinite recursion problem; switch_full_sectory calls
// write() which can call switch_full_sector. This has been seen in
// practice, and while it might be caused by corruption... corruption
// happens.
bool AP_FlashStorage::protected_switch_full_sector(void)
{
// clear any write error
write_error = false;
reserved_space = 0;
if (!write_all()) {
return false;
}
if (!erase_sector(current_sector ^ 1, true)) {
return false;
}
return switch_sectors();
}
// write some data to virtual EEPROM
bool AP_FlashStorage::write(uint16_t offset, uint16_t length)
{
if (write_error) {
return false;
}
//debug("write at %u for %u write_offset=%u\n", offset, length, write_offset);
while (length > 0) {
uint8_t n = max_write;
#if AP_FLASHSTORAGE_TYPE != AP_FLASHSTORAGE_TYPE_H7 && AP_FLASHSTORAGE_TYPE != AP_FLASHSTORAGE_TYPE_G4
if (length < n) {
n = length;
}
#endif
const uint32_t space_available = flash_sector_size - write_offset;
const uint32_t space_required = sizeof(struct block_header) + max_write + reserved_space;
if (space_available < space_required) {
if (!switch_sectors()) {
if (!flash_erase_ok()) {
return false;
}
if (!switch_full_sector()) {
return false;
}
}
}
struct PACKED {
struct block_header header;
uint8_t data[max_write];
} blk;
blk.header.state = BLOCK_STATE_WRITING;
blk.header.block_num = offset / block_size;
blk.header.num_blocks_minus_one = ((n + (block_size - 1)) / block_size)-1;
uint16_t block_ofs = blk.header.block_num*block_size;
uint16_t block_nbytes = (blk.header.num_blocks_minus_one+1)*block_size;
memcpy(blk.data, &mem_buffer[block_ofs], block_nbytes);
#if AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_F4
if (!flash_write(current_sector, write_offset, (uint8_t*)&blk.header, sizeof(blk.header))) {
return false;
}
if (!flash_write(current_sector, write_offset+sizeof(blk.header), blk.data, block_nbytes)) {
return false;
}
blk.header.state = BLOCK_STATE_VALID;
if (!flash_write(current_sector, write_offset, (uint8_t*)&blk.header, sizeof(blk.header))) {
return false;
}
#elif AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_F1
blk.header.state = BLOCK_STATE_VALID;
if (!flash_write(current_sector, write_offset, (uint8_t*)&blk, sizeof(blk.header) + block_nbytes)) {
return false;
}
#elif AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_H7 || AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_G4
blk.header.state = BLOCK_STATE_VALID;
if (!flash_write(current_sector, write_offset, (uint8_t*)&blk, sizeof(blk.header) + max_write)) {
return false;
}
#endif
write_offset += sizeof(blk.header) + block_nbytes;
uint8_t n2 = block_nbytes - (offset % block_size);
//debug("write_block at %u for %u n2=%u\n", block_ofs, block_nbytes, n2);
if (n2 > length) {
break;
}
offset += n2;
length -= n2;
}
//debug("write_offset %u\n", write_offset);
// handle wrap to next sector
// write data
// write header word
return true;
}
/*
load all data from a flash sector into mem_buffer
*/
bool AP_FlashStorage::load_sector(uint8_t sector)
{
uint32_t ofs = sizeof(sector_header);
while (ofs < flash_sector_size - sizeof(struct block_header)) {
struct block_header header;
if (!flash_read(sector, ofs, (uint8_t *)&header, sizeof(header))) {
return false;
}
enum BlockState state = (enum BlockState)header.state;
switch (state) {
case BLOCK_STATE_AVAILABLE:
// we've reached the end
write_offset = ofs;
return true;
case BLOCK_STATE_WRITING: {
/*
we were interrupted while writing a block. We can't
re-use the data in this block as it may have some bits
that are not set to 1, so by flash rules can't be set to
an arbitrary value. So we skip over this block, leaving
a gap. The gap size is limited to (7+1)*8=64 bytes. That
gap won't be recovered until we next do an erase of this
sector
*/
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
ofs += block_nbytes + sizeof(header);
break;
}
case BLOCK_STATE_VALID: {
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
uint16_t block_ofs = header.block_num*block_size;
if (block_ofs + block_nbytes > storage_size) {
// the data is invalid (out of range)
return false;
}
if (!flash_read(sector, ofs+sizeof(header), &mem_buffer[block_ofs], block_nbytes)) {
return false;
}
//debug("read at %u for %u\n", block_ofs, block_nbytes);
ofs += block_nbytes + sizeof(header);
break;
}
default:
// invalid state
return false;
}
#if AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_H7
// offsets must be advanced to a multiple of 32 on H7
ofs = (ofs + 31U) & ~31U;
#elif AP_FLASHSTORAGE_TYPE == AP_FLASHSTORAGE_TYPE_G4
// offsets must be advanced to a multiple of 8 on G4
ofs = (ofs + 7U) & ~7U;
#endif
}
write_offset = ofs;
return true;
}
/*
erase one sector
*/
bool AP_FlashStorage::erase_sector(uint8_t sector, bool mark_available)
{
if (!flash_erase(sector)) {
return false;
}
if (!mark_available) {
return true;
}
struct sector_header header;
header.set_state(SECTOR_STATE_AVAILABLE);
return flash_write(sector, 0, (const uint8_t *)&header, sizeof(header));
}
/*
erase both sectors
*/
bool AP_FlashStorage::erase_all(void)
{
write_error = false;
current_sector = 0;
write_offset = sizeof(struct sector_header);
if (!erase_sector(0, current_sector!=0)) {
return false;
}
if (!erase_sector(1, current_sector!=1)) {
return false;
}
// mark current sector as in-use
struct sector_header header;
header.set_state(SECTOR_STATE_IN_USE);
return flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header));
}
/*
write all of mem_buffer to current sector
*/
bool AP_FlashStorage::write_all()
{
debug("write_all to sector %u at %u with reserved_space=%u\n",
current_sector, write_offset, reserved_space);
for (uint16_t ofs=0; ofs