/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_BMP085.h" #include #include #include extern const AP_HAL::HAL &hal; #define BMP085_OVERSAMPLING_ULTRALOWPOWER 0 #define BMP085_OVERSAMPLING_STANDARD 1 #define BMP085_OVERSAMPLING_HIGHRES 2 #define BMP085_OVERSAMPLING_ULTRAHIGHRES 3 #ifndef BMP085_EOC #define BMP085_EOC -1 #define OVERSAMPLING BMP085_OVERSAMPLING_ULTRAHIGHRES #else #define OVERSAMPLING BMP085_OVERSAMPLING_HIGHRES #endif AP_Baro_BMP085::AP_Baro_BMP085(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { uint8_t buff[22]; // get pointer to i2c bus semaphore AP_HAL::Semaphore *sem = _dev->get_semaphore(); // take i2c bus sempahore if (!sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { AP_HAL::panic("BMP085: unable to get semaphore"); } if (BMP085_EOC >= 0) { _eoc = hal.gpio->channel(BMP085_EOC); _eoc->mode(HAL_GPIO_INPUT); } // We read the calibration data registers if (!_dev->read_registers(0xAA, buff, sizeof(buff))) { AP_HAL::panic("BMP085: bad calibration registers"); } ac1 = ((int16_t)buff[0] << 8) | buff[1]; ac2 = ((int16_t)buff[2] << 8) | buff[3]; ac3 = ((int16_t)buff[4] << 8) | buff[5]; ac4 = ((int16_t)buff[6] << 8) | buff[7]; ac5 = ((int16_t)buff[8] << 8) | buff[9]; ac6 = ((int16_t)buff[10] << 8) | buff[11]; b1 = ((int16_t)buff[12] << 8) | buff[13]; b2 = ((int16_t)buff[14] << 8) | buff[15]; mb = ((int16_t)buff[16] << 8) | buff[17]; mc = ((int16_t)buff[18] << 8) | buff[19]; md = ((int16_t)buff[20] << 8) | buff[21]; _last_press_read_command_time = 0; _last_temp_read_command_time = 0; _instance = _frontend.register_sensor(); // Send a command to read temperature _cmd_read_temp(); _state = 0; sem->give(); _dev->register_periodic_callback(20000, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP085::_timer, void)); } /* This is a state machine. Acumulate a new sensor reading. */ void AP_Baro_BMP085::_timer(void) { if (!_data_ready()) { return; } if (_state == 0) { _read_temp(); } else if (_read_pressure()) { _calculate(); } _state++; if (_state == 25) { _state = 0; _cmd_read_temp(); } else { _cmd_read_pressure(); } } /* transfer data to the frontend */ void AP_Baro_BMP085::update(void) { if (_sem->take_nonblocking()) { if (!_has_sample) { _sem->give(); return; } float temperature = 0.1f * _temp; float pressure = _pressure_filter.getf(); _copy_to_frontend(_instance, pressure, temperature); _sem->give(); } } // Send command to Read Pressure void AP_Baro_BMP085::_cmd_read_pressure() { _dev->write_register(0xF4, 0x34 + (OVERSAMPLING << 6)); _last_press_read_command_time = AP_HAL::millis(); } // Read raw pressure values bool AP_Baro_BMP085::_read_pressure() { uint8_t buf[3]; if (!_dev->read_registers(0xF6, buf, sizeof(buf))) { _retry_time = AP_HAL::millis() + 1000; _dev->set_speed(AP_HAL::Device::SPEED_LOW); return false; } _raw_pressure = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING); return true; } // Send Command to Read Temperature void AP_Baro_BMP085::_cmd_read_temp() { _dev->write_register(0xF4, 0x2E); _last_temp_read_command_time = AP_HAL::millis(); } // Read raw temperature values void AP_Baro_BMP085::_read_temp() { uint8_t buf[2]; int32_t _temp_sensor; if (!_dev->read_registers(0xF6, buf, sizeof(buf))) { _dev->set_speed(AP_HAL::Device::SPEED_LOW); return; } _temp_sensor = buf[0]; _temp_sensor = (_temp_sensor << 8) | buf[1]; _raw_temp = _temp_sensor; } // _calculate Temperature and Pressure in real units. void AP_Baro_BMP085::_calculate() { int32_t x1, x2, x3, b3, b5, b6, p; uint32_t b4, b7; int32_t tmp; // See Datasheet page 13 for this formulas // Based also on Jee Labs BMP085 example code. Thanks for share. // Temperature calculations x1 = ((int32_t)_raw_temp - ac6) * ac5 >> 15; x2 = ((int32_t) mc << 11) / (x1 + md); b5 = x1 + x2; _temp = (b5 + 8) >> 4; // Pressure calculations b6 = b5 - 4000; x1 = (b2 * (b6 * b6 >> 12)) >> 11; x2 = ac2 * b6 >> 11; x3 = x1 + x2; //b3 = (((int32_t) ac1 * 4 + x3)<> 2; // BAD //b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0 tmp = ac1; tmp = (tmp*4 + x3)<> 13; x2 = (b1 * (b6 * b6 >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15; b7 = ((uint32_t) _raw_pressure - b3) * (50000 >> OVERSAMPLING); p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; p += ((x1 + x2 + 3791) >> 4); if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { _pressure_filter.apply(p); _has_sample = true; _sem->give(); } } bool AP_Baro_BMP085::_data_ready() { if (BMP085_EOC >= 0) { return _eoc->read(); } // No EOC pin: use time from last read instead. if (_state == 0) { return AP_HAL::millis() > _last_temp_read_command_time + 5; } uint32_t conversion_time_msec; switch (OVERSAMPLING) { case BMP085_OVERSAMPLING_ULTRALOWPOWER: conversion_time_msec = 5; break; case BMP085_OVERSAMPLING_STANDARD: conversion_time_msec = 8; break; case BMP085_OVERSAMPLING_HIGHRES: conversion_time_msec = 14; break; case BMP085_OVERSAMPLING_ULTRAHIGHRES: conversion_time_msec = 26; default: break; } return AP_HAL::millis() > _last_press_read_command_time + conversion_time_msec; }