#include "Copter.h" #if MODE_ACRO_ENABLED == ENABLED #if FRAME_CONFIG == HELI_FRAME /* * Init and run calls for acro flight mode for trad heli */ // heli_acro_init - initialise acro controller bool ModeAcro_Heli::init(bool ignore_checks) { // if heli is equipped with a flybar, then tell the attitude controller to pass through controls directly to servos attitude_control->use_flybar_passthrough(motors->has_flybar(), motors->supports_yaw_passthrough()); motors->set_acro_tail(true); // set stab collective false to use full collective pitch range copter.input_manager.set_use_stab_col(false); // always successfully enter acro return true; } // heli_acro_run - runs the acro controller // should be called at 100hz or more void ModeAcro_Heli::run() { float target_roll, target_pitch, target_yaw; float pilot_throttle_scaled; // Tradheli should not reset roll, pitch, yaw targets when motors are not runup while flying, because // we may be in autorotation flight. This is so that the servos move in a realistic fashion while disarmed // for operational checks. Also, unlike multicopters we do not set throttle (i.e. collective pitch) to zero // so the swash servos move. if (!motors->armed()) { // Motors should be Stopped motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); } else { // heli will not let the spool state progress to THROTTLE_UNLIMITED until motor interlock is enabled motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); } switch (motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: // Motors Stopped attitude_control->reset_target_and_rate(false); attitude_control->reset_rate_controller_I_terms(); break; case AP_Motors::SpoolState::GROUND_IDLE: // If aircraft is landed, set target heading to current and reset the integrator // Otherwise motors could be at ground idle for practice autorotation if ((motors->init_targets_on_arming() && motors->using_leaky_integrator()) || (copter.ap.land_complete && !motors->using_leaky_integrator())) { attitude_control->reset_target_and_rate(false); attitude_control->reset_rate_controller_I_terms_smoothly(); } break; case AP_Motors::SpoolState::THROTTLE_UNLIMITED: if (copter.ap.land_complete && !motors->using_leaky_integrator()) { attitude_control->reset_rate_controller_I_terms_smoothly(); } break; case AP_Motors::SpoolState::SPOOLING_UP: case AP_Motors::SpoolState::SPOOLING_DOWN: // do nothing break; } if (!motors->has_flybar()){ // convert the input to the desired body frame rate get_pilot_desired_angle_rates(channel_roll->get_control_in(), channel_pitch->get_control_in(), channel_yaw->get_control_in(), target_roll, target_pitch, target_yaw); // only mimic flybar response when trainer mode is disabled if ((Trainer)g.acro_trainer.get() == Trainer::OFF) { // while landed always leak off target attitude to current attitude if (copter.ap.land_complete) { virtual_flybar(target_roll, target_pitch, target_yaw, 3.0f, 3.0f); // while flying use acro balance parameters for leak rate } else { virtual_flybar(target_roll, target_pitch, target_yaw, g.acro_balance_pitch, g.acro_balance_roll); } } if (motors->supports_yaw_passthrough()) { // if the tail on a flybar heli has an external gyro then // also use no deadzone for the yaw control and // pass-through the input direct to output. target_yaw = channel_yaw->get_control_in_zero_dz(); } // run attitude controller if (g2.acro_options.get() & uint8_t(AcroOptions::RATE_LOOP_ONLY)) { attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw); } else { attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); } }else{ /* for fly-bar passthrough use control_in values with no deadzone. This gives true pass-through. */ float roll_in = channel_roll->get_control_in_zero_dz(); float pitch_in = channel_pitch->get_control_in_zero_dz(); float yaw_in; if (motors->supports_yaw_passthrough()) { // if the tail on a flybar heli has an external gyro then // also use no deadzone for the yaw control and // pass-through the input direct to output. yaw_in = channel_yaw->get_control_in_zero_dz(); } else { // if there is no external gyro then run the usual // ACRO_YAW_P gain on the input control, including // deadzone yaw_in = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // run attitude controller attitude_control->passthrough_bf_roll_pitch_rate_yaw(roll_in, pitch_in, yaw_in); } // get pilot's desired throttle pilot_throttle_scaled = copter.input_manager.get_pilot_desired_collective(channel_throttle->get_control_in()); // output pilot's throttle without angle boost attitude_control->set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt); } // virtual_flybar - acts like a flybar by leaking target atttitude back to current attitude void ModeAcro_Heli::virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak) { Vector3f rate_ef_level, rate_bf_level; // get attitude targets const Vector3f att_target = attitude_control->get_att_target_euler_cd(); // Calculate earth frame rate command for roll leak to current attitude rate_ef_level.x = -wrap_180_cd(att_target.x - ahrs.roll_sensor) * roll_leak; // Calculate earth frame rate command for pitch leak to current attitude rate_ef_level.y = -wrap_180_cd(att_target.y - ahrs.pitch_sensor) * pitch_leak; // Calculate earth frame rate command for yaw rate_ef_level.z = 0; // convert earth-frame leak rates to body-frame leak rates attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd()*radians(0.01f), rate_ef_level, rate_bf_level); // combine earth frame rate corrections with rate requests roll_out += rate_bf_level.x; pitch_out += rate_bf_level.y; yaw_out += rate_bf_level.z; } #endif //HELI_FRAME #endif //MODE_ACRO_ENABLED == ENABLED