// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv); #endif static int8_t test_compass(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); static int8_t test_ins(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv); static int8_t test_motors(uint8_t argc, const Menu::arg *argv); static int8_t test_motorsync(uint8_t argc, const Menu::arg *argv); static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); #endif // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command test_menu_commands[] PROGMEM = { #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS {"baro", test_baro}, #endif {"compass", test_compass}, {"gps", test_gps}, {"ins", test_ins}, {"logging", test_logging}, {"motors", test_motors}, {"motorsync", test_motorsync}, {"optflow", test_optflow}, {"pwm", test_radio_pwm}, {"radio", test_radio}, {"relay", test_relay}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 {"shell", test_shell}, #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS {"sonar", test_sonar}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { test_menu.run(); return 0; } #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv) { int32_t alt; print_hit_enter(); init_barometer(true); while(1) { delay(100); alt = read_barometer(); if (!barometer.healthy) { cliSerial->println_P(PSTR("not healthy")); } else { cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), alt / 100.0, barometer.get_pressure(), barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } return 0; } #endif static int8_t test_compass(uint8_t argc, const Menu::arg *argv) { uint8_t delta_ms_fast_loop; uint8_t medium_loopCounter = 0; if (!g.compass_enabled) { cliSerial->printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_compass(&compass); report_compass(); // we need the AHRS initialised for this test ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); ahrs.reset(); int16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // INS // --- ahrs.update(); medium_loopCounter++; if(medium_loopCounter == 5) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_dcm_matrix(); heading = compass.calculate_heading(m); compass.null_offsets(); } medium_loopCounter = 0; } counter++; if (counter>20) { if (compass.healthy()) { const Vector3f &mag_ofs = compass.get_offsets(); const Vector3f &mag = compass.get_field(); cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360_cd(ToDeg(heading) * 100)) /100, mag.x, mag.y, mag.z, mag_ofs.x, mag_ofs.y, mag_ofs.z); } else { cliSerial->println_P(PSTR("compass not healthy")); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println_P(PSTR("saving offsets")); compass.save_offsets(); return (0); } static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(100); g_gps->update(); if (g_gps->new_data) { cliSerial->printf_P(PSTR("Lat: ")); print_latlon(cliSerial, g_gps->latitude); cliSerial->printf_P(PSTR(", Lon ")); print_latlon(cliSerial, g_gps->longitude); cliSerial->printf_P(PSTR(", Alt: %ldm, #sats: %d\n"), g_gps->altitude_cm/100, g_gps->num_sats); g_gps->new_data = false; }else{ cliSerial->print_P(PSTR(".")); } if(cliSerial->available() > 0) { return (0); } } return 0; } static int8_t test_ins(uint8_t argc, const Menu::arg *argv) { Vector3f gyro, accel; print_hit_enter(); cliSerial->printf_P(PSTR("INS\n")); delay(1000); ahrs.init(); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); cliSerial->printf_P(PSTR("...done\n")); delay(50); while(1) { ins.update(); gyro = ins.get_gyro(); accel = ins.get_accel(); float test = accel.length() / GRAVITY_MSS; cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %7.4f \n"), accel.x, accel.y, accel.z, gyro.x, gyro.y, gyro.z, test); delay(40); if(cliSerial->available() > 0) { return (0); } } } /* * test the dataflash is working */ static int8_t test_logging(uint8_t argc, const Menu::arg *argv) { cliSerial->println_P(PSTR("Testing dataflash logging")); DataFlash.ShowDeviceInfo(cliSerial); return 0; } static int8_t test_motors(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR( "Connect battery for this test.\n" "Motors will spin by frame position order.\n" "Front (& right of centerline) motor first, then in clockwise order around frame.\n" "Remember to disconnect battery after this test.\n" "Any key to exit.\n")); // ensure all values have been sent to motors motors.set_update_rate(g.rc_speed); motors.set_frame_orientation(g.frame_orientation); motors.set_min_throttle(g.throttle_min); motors.set_mid_throttle(g.throttle_mid); // enable motors init_rc_out(); while(1) { delay(20); read_radio(); motors.output_test(); if(cliSerial->available() > 0) { g.esc_calibrate.set_and_save(0); return(0); } } } // test_motorsync - suddenly increases pwm output to motors to test if ESC loses sync static int8_t test_motorsync(uint8_t argc, const Menu::arg *argv) { bool test_complete = false; bool spin_motors = false; uint32_t spin_start_time = 0; uint32_t last_run_time; int16_t last_throttle = 0; int16_t c; // check if radio is calibration pre_arm_rc_checks(); if (!ap.pre_arm_rc_check) { cliSerial->print_P(PSTR("radio not calibrated\n")); return 0; } // print warning that motors will spin // ask user to raise throttle // inform how to stop test cliSerial->print_P(PSTR("This sends sudden outputs to the motors based on the pilot's throttle to test for ESC loss of sync. Motors will spin so mount props up-side-down!\n Hold throttle low, then raise throttle stick to desired level and press A. Motors will spin for 2 sec and then return to low.\nPress any key to exit.\n")); // clear out user input while (cliSerial->available()) { cliSerial->read(); } // disable throttle and battery failsafe g.failsafe_throttle = FS_THR_DISABLED; g.failsafe_battery_enabled = FS_BATT_DISABLED; // read radio read_radio(); // exit immediately if throttle is not zero if( g.rc_3.control_in != 0 ) { cliSerial->print_P(PSTR("throttle not zero\n")); return 0; } // clear out any user input while (cliSerial->available()) { cliSerial->read(); } // enable motors and pass through throttle init_rc_out(); output_min(); motors.armed(true); // initialise run time last_run_time = millis(); // main run while the test is not complete while(!test_complete) { // 50hz loop if( millis() - last_run_time > 20 ) { last_run_time = millis(); // read radio input read_radio(); // display throttle value if (abs(g.rc_3.control_in-last_throttle) > 10) { cliSerial->printf_P(PSTR("\nThr:%d"),g.rc_3.control_in); last_throttle = g.rc_3.control_in; } // decode user input if (cliSerial->available()) { c = cliSerial->read(); if (c == 'a' || c == 'A') { spin_motors = true; spin_start_time = millis(); // display user's throttle level cliSerial->printf_P(PSTR("\nSpin motors at:%d"),(int)g.rc_3.control_in); // clear out any other use input queued up while (cliSerial->available()) { cliSerial->read(); } }else{ // any other input ends the test test_complete = true; motors.armed(false); } } // check if time to stop motors if (spin_motors) { if ((millis() - spin_start_time) > 2000) { spin_motors = false; cliSerial->printf_P(PSTR("\nMotors stopped")); } } // output to motors if (spin_motors) { // pass pilot throttle through to motors motors.throttle_pass_through(); }else{ // spin motors at minimum output_min(); } } } // stop motors motors.output_min(); motors.armed(false); // clear out any user input while( cliSerial->available() ) { cliSerial->read(); } // display completion message cliSerial->printf_P(PSTR("\nTest complete\n")); return 0; } static int8_t test_optflow(uint8_t argc, const Menu::arg *argv) { #if OPTFLOW == ENABLED if(g.optflow_enabled) { cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); print_hit_enter(); while(1) { delay(200); optflow.update(); cliSerial->printf_P(PSTR("dx:%d\t dy:%d\t squal:%d\n"), optflow.dx, optflow.dy, optflow.surface_quality); if(cliSerial->available() > 0) { return (0); } } } else { cliSerial->printf_P(PSTR("OptFlow: ")); print_enabled(false); } return (0); #else return (0); #endif // OPTFLOW == ENABLED } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // servo Yaw //APM_RC.OutputCh(CH_7, g.rc_4.radio_out); cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); read_radio(); cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { cliSerial->printf_P(PSTR("Relay on\n")); relay.on(0); delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf_P(PSTR("Relay off\n")); relay.off(0); delay(3000); if(cliSerial->available() > 0) { return (0); } } } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* * run a debug shell */ static int8_t test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS /* * test the sonar */ static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { #if CONFIG_SONAR == ENABLED if(g.sonar_enabled == false) { cliSerial->printf_P(PSTR("Sonar disabled\n")); return (0); } // make sure sonar is initialised init_sonar(); print_hit_enter(); while(1) { delay(100); cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read()); if(cliSerial->available() > 0) { return (0); } } #endif return (0); } #endif static void print_hit_enter() { cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); } #endif // CLI_ENABLED