// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // run_nav_updates - top level call for the autopilot // ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions // To-Do - rename and move this function to make it's purpose more clear static void run_nav_updates(void) { // fetch position from inertial navigation calc_position(); // calculate distance and bearing for reporting and autopilot decisions calc_distance_and_bearing(); // run autopilot to make high level decisions about control modes run_autopilot(); } // calc_position - get lat and lon positions from inertial nav library static void calc_position(){ if( inertial_nav.position_ok() ) { // pull position from interial nav library current_loc.lng = inertial_nav.get_longitude(); current_loc.lat = inertial_nav.get_latitude(); } } // calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions static void calc_distance_and_bearing() { Vector3f curr = inertial_nav.get_position(); // get target from loiter or wpinav controller if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) { wp_distance = wp_nav.get_distance_to_target(); wp_bearing = wp_nav.get_bearing_to_target(); }else if( nav_mode == NAV_WP ) { wp_distance = wp_nav.get_distance_to_destination(); wp_bearing = wp_nav.get_bearing_to_destination(); }else{ wp_distance = 0; wp_bearing = 0; } // calculate home distance and bearing if(GPS_ok()) { home_distance = pythagorous2(curr.x, curr.y); home_bearing = pv_get_bearing_cd(curr,Vector3f(0,0,0)); // update super simple bearing (if required) because it relies on home_bearing update_super_simple_bearing(false); } } // run_autopilot - highest level call to process mission commands static void run_autopilot() { switch( control_mode ) { case AUTO: // load the next command if the command queues are empty update_commands(); // process the active navigation and conditional commands verify_commands(); break; case GUIDED: // no need to do anything - wp_nav should take care of getting us to the desired location break; case RTL: verify_RTL(); break; } } // set_nav_mode - update nav mode and initialise any variables as required static bool set_nav_mode(uint8_t new_nav_mode) { bool nav_initialised = false; // boolean to ensure proper initialisation of nav modes Vector3f stopping_point; // stopping point for circle mode // return immediately if no change if( new_nav_mode == nav_mode ) { return true; } switch( new_nav_mode ) { case NAV_NONE: nav_initialised = true; // initialise global navigation variables including wp_distance reset_nav_params(); break; case NAV_CIRCLE: // set center of circle to current position wp_nav.get_stopping_point(inertial_nav.get_position(),inertial_nav.get_velocity(),stopping_point); circle_set_center(stopping_point,ahrs.yaw); nav_initialised = true; break; case NAV_LOITER: // set target to current position wp_nav.init_loiter_target(inertial_nav.get_position(), inertial_nav.get_velocity()); nav_initialised = true; break; case NAV_WP: nav_initialised = true; break; } // if initialisation has been successful update the yaw mode if( nav_initialised ) { nav_mode = new_nav_mode; } // return success or failure return nav_initialised; } // update_nav_mode - run navigation controller based on nav_mode // called at 100hz static void update_nav_mode() { static uint8_t log_counter; // used to slow NTUN logging // exit immediately if not auto_armed or inertial nav position bad if (!ap.auto_armed || !inertial_nav.position_ok()) { return; } switch( nav_mode ) { case NAV_NONE: // do nothing break; case NAV_CIRCLE: // call circle controller which in turn calls loiter controller update_circle(); break; case NAV_LOITER: // reset target if we are still on the ground if (ap.land_complete) { wp_nav.init_loiter_target(inertial_nav.get_position(),inertial_nav.get_velocity()); }else{ // call loiter controller wp_nav.update_loiter(); } break; case NAV_WP: // call waypoint controller wp_nav.update_wpnav(); break; } // log to dataflash at 10hz log_counter++; if (log_counter >= 10 && (g.log_bitmask & MASK_LOG_NTUN) && nav_mode != NAV_NONE) { log_counter = 0; Log_Write_Nav_Tuning(); } } // Keeps old data out of our calculation / logs static void reset_nav_params(void) { // Will be set by new command wp_bearing = 0; // Will be set by new command wp_distance = 0; // Will be set by nav or loiter controllers lon_error = 0; lat_error = 0; } // get_yaw_slew - reduces rate of change of yaw to a maximum // assumes it is called at 100hz so centi-degrees and update rate cancel each other out static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec) { return wrap_360_cd(current_yaw + constrain_int16(wrap_180_cd(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec)); } ////////////////////////////////////////////////////////// // circle navigation controller ////////////////////////////////////////////////////////// // circle_set_center -- set circle controller's center position and starting angle static void circle_set_center(const Vector3f current_position, float heading_in_radians) { float max_velocity; float cir_radius = g.circle_radius * 100; // set circle center to circle_radius ahead of current position circle_center.x = current_position.x + cir_radius * ahrs.cos_yaw(); circle_center.y = current_position.y + cir_radius * ahrs.sin_yaw(); // if we are doing a panorama set the circle_angle to the current heading if( g.circle_radius <= 0 ) { circle_angle = heading_in_radians; circle_angular_velocity_max = ToRad(g.circle_rate); circle_angular_acceleration = circle_angular_velocity_max; // reach maximum yaw velocity in 1 second }else{ // set starting angle to current heading - 180 degrees circle_angle = wrap_PI(heading_in_radians-PI); // calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle max_velocity = min(wp_nav.get_horizontal_velocity(), safe_sqrt(0.5f*wp_nav.get_waypoint_acceleration()*g.circle_radius*100.0f)); // angular_velocity in radians per second circle_angular_velocity_max = max_velocity/((float)g.circle_radius * 100.0f); circle_angular_velocity_max = constrain_float(ToRad(g.circle_rate),-circle_angular_velocity_max,circle_angular_velocity_max); // angular_velocity in radians per second circle_angular_acceleration = wp_nav.get_waypoint_acceleration()/((float)g.circle_radius * 100); if (g.circle_rate < 0.0f) { circle_angular_acceleration = -circle_angular_acceleration; } } // initialise other variables circle_angle_total = 0; circle_angular_velocity = 0; // initialise loiter target. Note: feed forward velocity set to zero wp_nav.init_loiter_target(current_position, Vector3f(0,0,0)); } // update_circle - circle position controller's main call which in turn calls loiter controller with updated target position static void update_circle() { static float last_update; // time of last circle call // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - last_update) / 1000.0f; // ensure enough time has passed since the last iteration if (dt >= 0.095f) { float cir_radius = g.circle_radius * 100; Vector3f circle_target; // range check dt if (dt >= 1.0f) { dt = 0; } // update time of circle call last_update = now; // ramp up angular velocity to maximum if (g.circle_rate >= 0) { if (circle_angular_velocity < circle_angular_velocity_max) { circle_angular_velocity += circle_angular_acceleration * dt; circle_angular_velocity = constrain_float(circle_angular_velocity, 0, circle_angular_velocity_max); } }else{ if (circle_angular_velocity > circle_angular_velocity_max) { circle_angular_velocity += circle_angular_acceleration * dt; circle_angular_velocity = constrain_float(circle_angular_velocity, circle_angular_velocity_max, 0); } } // update the target angle circle_angle += circle_angular_velocity * dt; circle_angle = wrap_PI(circle_angle); // update the total angle travelled circle_angle_total += circle_angular_velocity * dt; // if the circle_radius is zero we are doing panorama so no need to update loiter target if( g.circle_radius != 0.0 ) { // calculate target position circle_target.x = circle_center.x + cir_radius * cosf(-circle_angle); circle_target.y = circle_center.y - cir_radius * sinf(-circle_angle); circle_target.z = wp_nav.get_desired_alt(); // re-use loiter position controller wp_nav.set_loiter_target(circle_target); } } // call loiter controller wp_nav.update_loiter(); }