/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduCopter V3.2-dev" /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduCopter Version 3.0 * Creator: Jason Short * Lead Developer: Randy Mackay * Lead Tester: Marco Robustini * Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen, Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland, Jean-Louis Naudin, Mike Smith, and more * Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio * * Special Thanks to contributors (in alphabetical order by first name): * * Adam M Rivera :Auto Compass Declination * Amilcar Lucas :Camera mount library * Andrew Tridgell :General development, Mavlink Support * Angel Fernandez :Alpha testing * AndreasAntonopoulous:GeoFence * Arthur Benemann :DroidPlanner GCS * Benjamin Pelletier :Libraries * Bill King :Single Copter * Christof Schmid :Alpha testing * Craig Elder :Release Management, Support * Dani Saez :V Octo Support * Doug Weibel :DCM, Libraries, Control law advice * Gregory Fletcher :Camera mount orientation math * Guntars :Arming safety suggestion * HappyKillmore :Mavlink GCS * Hein Hollander :Octo Support, Heli Testing * Igor van Airde :Control Law optimization * Jack Dunkle :Alpha testing * James Goppert :Mavlink Support * Jani Hiriven :Testing feedback * Jean-Louis Naudin :Auto Landing * John Arne Birkeland :PPM Encoder * Jose Julio :Stabilization Control laws, MPU6k driver * Julian Oes :Pixhawk * Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed * Kevin Hester :Andropilot GCS * Max Levine :Tri Support, Graphics * Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers * Marco Robustini :Lead tester * Michael Oborne :Mission Planner GCS * Mike Smith :Pixhawk driver, coding support * Olivier Adler :PPM Encoder, piezo buzzer * Pat Hickey :Hardware Abstraaction Layer (HAL) * Robert Lefebvre :Heli Support, Copter LEDs * Roberto Navoni :Library testing, Porting to VRBrain * Sandro Benigno :Camera support, MinimOSD * ..and many more. * * Code commit statistics can be found here: https://github.com/diydrones/ardupilot/graphs/contributors * Wiki: http://copter.ardupilot.com/ * Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6 * */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// #include #include #include // Common dependencies #include #include #include #include // AP_HAL #include #include #include #include #include #include #include // Application dependencies #include // MAVLink GCS definitions #include // ArduPilot GPS library #include // GPS glitch protection library #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // Curve used to linearlise throttle pwm to thrust #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include #include // PI library #include // PID library #include // Attitude control library #include // RC Channel Library #include // AP Motors library #include // Range finder library #include // Optical Flow library #include // Filter library #include // APM FIFO Buffer #include // APM relay #include #include // Photo or video camera #include // Camera/Antenna mount #include // needed for AHRS build #include // needed for AHRS build #include // ArduPilot Mega inertial navigation library #include // ArduCopter waypoint navigation library #include // ArduPilot Mega Declination Helper Library #include // Arducopter Fence library #include // software in the loop support #include // main loop scheduler #include // RC input mapping library #include // Notify library #include // Battery monitor library #include // board configuration library #if SPRAYER == ENABLED #include // crop sprayer library #endif #if EPM_ENABLED == ENABLED #include // EPM cargo gripper stuff #endif // AP_HAL to Arduino compatibility layer #include "compat.h" // Configuration #include "defines.h" #include "config.h" #include "config_channels.h" // key aircraft parameters passed to multiple libraries static AP_Vehicle::MultiCopter aparm; // Local modules #include "Parameters.h" #include "GCS.h" //////////////////////////////////////////////////////////////////////////////// // cliSerial //////////////////////////////////////////////////////////////////////////////// // cliSerial isn't strictly necessary - it is an alias for hal.console. It may // be deprecated in favor of hal.console in later releases. static AP_HAL::BetterStream* cliSerial; // N.B. we need to keep a static declaration which isn't guarded by macros // at the top to cooperate with the prototype mangler. //////////////////////////////////////////////////////////////////////////////// // AP_HAL instance //////////////////////////////////////////////////////////////////////////////// const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; // main loop scheduler static AP_Scheduler scheduler; // AP_Notify instance static AP_Notify notify; //////////////////////////////////////////////////////////////////////////////// // prototypes //////////////////////////////////////////////////////////////////////////////// static void update_events(void); static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode); //////////////////////////////////////////////////////////////////////////////// // Dataflash //////////////////////////////////////////////////////////////////////////////// #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 static DataFlash_APM2 DataFlash; #elif CONFIG_HAL_BOARD == HAL_BOARD_APM1 static DataFlash_APM1 DataFlash; #elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL static DataFlash_File DataFlash("logs"); //static DataFlash_SITL DataFlash; #elif CONFIG_HAL_BOARD == HAL_BOARD_PX4 static DataFlash_File DataFlash("/fs/microsd/APM/LOGS"); #elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX static DataFlash_File DataFlash("logs"); #else static DataFlash_Empty DataFlash; #endif //////////////////////////////////////////////////////////////////////////////// // the rate we run the main loop at //////////////////////////////////////////////////////////////////////////////// static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ; //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; static GPS_Glitch gps_glitch(g_gps); // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED #if CONFIG_ADC == ENABLED static AP_ADC_ADS7844 adc; #endif #if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 static AP_InertialSensor_MPU6000 ins; #elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN static AP_InertialSensor_Oilpan ins(&adc); #elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL static AP_InertialSensor_HIL ins; #elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4 static AP_InertialSensor_PX4 ins; #elif CONFIG_IMU_TYPE == CONFIG_IMU_FLYMAPLE AP_InertialSensor_Flymaple ins; #elif CONFIG_IMU_TYPE == CONFIG_IMU_L3G4200D AP_InertialSensor_L3G4200D ins; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // When building for SITL we use the HIL barometer and compass drivers static AP_Baro_HIL barometer; static AP_Compass_HIL compass; static SITL sitl; #else // Otherwise, instantiate a real barometer and compass driver #if CONFIG_BARO == AP_BARO_BMP085 static AP_Baro_BMP085 barometer; #elif CONFIG_BARO == AP_BARO_PX4 static AP_Baro_PX4 barometer; #elif CONFIG_BARO == AP_BARO_MS5611 #if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi); #elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c); #else #error Unrecognized CONFIG_MS5611_SERIAL setting. #endif #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static AP_Compass_PX4 compass; #else static AP_Compass_HMC5843 compass; #endif #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver; #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver; #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver; #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver; #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19 AP_GPS_MTK19 g_gps_driver; #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver; #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL static AP_AHRS_DCM ahrs(ins, g_gps); #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators static AP_ADC_HIL adc; static AP_Baro_HIL barometer; static AP_Compass_HIL compass; static AP_GPS_HIL g_gps_driver; static AP_InertialSensor_HIL ins; static AP_AHRS_DCM ahrs(ins, g_gps); #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // When building for SITL we use the HIL barometer and compass drivers static SITL sitl; #endif #elif HIL_MODE == HIL_MODE_ATTITUDE static AP_ADC_HIL adc; static AP_InertialSensor_HIL ins; static AP_AHRS_HIL ahrs(ins, g_gps); static AP_GPS_HIL g_gps_driver; static AP_Compass_HIL compass; // never used static AP_Baro_HIL barometer; #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // When building for SITL we use the HIL barometer and compass drivers static SITL sitl; #endif #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE //////////////////////////////////////////////////////////////////////////////// // Optical flow sensor //////////////////////////////////////////////////////////////////////////////// #if OPTFLOW == ENABLED static AP_OpticalFlow_ADNS3080 optflow; #endif //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS; static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS]; //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilterInt16_Size3 sonar_mode_filter(1); #if CONFIG_SONAR == ENABLED static AP_HAL::AnalogSource *sonar_analog_source; static AP_RangeFinder_MaxsonarXL *sonar; #endif //////////////////////////////////////////////////////////////////////////////// // User variables //////////////////////////////////////////////////////////////////////////////// #ifdef USERHOOK_VARIABLES #include USERHOOK_VARIABLES #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// /* Radio values * Channel assignments * 1 Ailerons (rudder if no ailerons) * 2 Elevator * 3 Throttle * 4 Rudder (if we have ailerons) * 5 Mode - 3 position switch * 6 User assignable * 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) * 8 TBD * Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. * See libraries/RC_Channel/RC_Channel_aux.h for more information */ //Documentation of GLobals: static union { struct { uint8_t home_is_set : 1; // 0 uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised uint8_t logging_started : 1; // 6 // true if dataflash logging has started uint8_t do_flip : 1; // 7 // Used to enable flip code uint8_t takeoff_complete : 1; // 8 uint8_t land_complete : 1; // 9 // true if we have detected a landing uint8_t new_radio_frame : 1; // 10 // Set true if we have new PWM data to act on from the Radio uint8_t CH7_flag : 2; // 11,12 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high uint8_t CH8_flag : 2; // 13,14 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high uint8_t usb_connected : 1; // 15 // true if APM is powered from USB connection uint8_t yaw_stopped : 1; // 16 // Used to manage the Yaw hold capabilities uint8_t disable_stab_rate_limit : 1; // 17 // disables limits rate request from the stability controller uint8_t rc_receiver_present : 1; // 18 // true if we have an rc receiver present (i.e. if we've ever received an update }; uint32_t value; } ap; //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, static int8_t control_mode = STABILIZE; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch static uint8_t oldSwitchPosition; static RCMapper rcmap; // board specific config static AP_BoardConfig BoardConfig; // receiver RSSI static uint8_t receiver_rssi; //////////////////////////////////////////////////////////////////////////////// // Failsafe //////////////////////////////////////////////////////////////////////////////// static struct { uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station uint8_t radio : 1; // 1 // A status flag for the radio failsafe uint8_t battery : 1; // 2 // A status flag for the battery failsafe uint8_t gps : 1; // 3 // A status flag for the gps failsafe uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe int8_t radio_counter; // number of iterations with throttle below throttle_fs_value uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe } failsafe; //////////////////////////////////////////////////////////////////////////////// // Motor Output //////////////////////////////////////////////////////////////////////////////// #if FRAME_CONFIG == QUAD_FRAME #define MOTOR_CLASS AP_MotorsQuad #elif FRAME_CONFIG == TRI_FRAME #define MOTOR_CLASS AP_MotorsTri #elif FRAME_CONFIG == HEXA_FRAME #define MOTOR_CLASS AP_MotorsHexa #elif FRAME_CONFIG == Y6_FRAME #define MOTOR_CLASS AP_MotorsY6 #elif FRAME_CONFIG == OCTA_FRAME #define MOTOR_CLASS AP_MotorsOcta #elif FRAME_CONFIG == OCTA_QUAD_FRAME #define MOTOR_CLASS AP_MotorsOctaQuad #elif FRAME_CONFIG == HELI_FRAME #define MOTOR_CLASS AP_MotorsHeli #elif FRAME_CONFIG == SINGLE_FRAME #define MOTOR_CLASS AP_MotorsSingle #elif FRAME_CONFIG == COAX_FRAME #define MOTOR_CLASS AP_MotorsCoax #else #error Unrecognised frame type #endif #if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4); #elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7); #elif FRAME_CONFIG == SINGLE_FRAME // single constructor requires extra servos for flaps static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.single_servo_1, &g.single_servo_2, &g.single_servo_3, &g.single_servo_4); #elif FRAME_CONFIG == COAX_FRAME // single constructor requires extra servos for flaps static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.single_servo_1, &g.single_servo_2); #else static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4); #endif //////////////////////////////////////////////////////////////////////////////// // Attitude controller //////////////////////////////////////////////////////////////////////////////// AC_AttitudeControl attitude_control(ahrs, ins, aparm, motors, g.pi_stabilize_roll, g.pi_stabilize_pitch, g.pi_stabilize_yaw, g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw, g.rc_1.servo_out, g.rc_2.servo_out, g.rc_4.servo_out, g.rc_3.servo_out); //////////////////////////////////////////////////////////////////////////////// // PIDs //////////////////////////////////////////////////////////////////////////////// // This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates // and not the adjusted omega rates, but the name is stuck static Vector3f omega; // This is used to hold radio tuning values for in-flight CH6 tuning float tuning_value; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // We need to scale the longitude up to make these calcs work // to account for decreasing distance between lines of longitude away from the equator static float scaleLongUp = 1; // Sometimes we need to remove the scaling for distance calcs static float scaleLongDown = 1; //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // This is the angle from the copter to the next waypoint in centi-degrees static int32_t wp_bearing; // The original bearing to the next waypoint. used to point the nose of the copter at the next waypoint static int32_t original_wp_bearing; // The location of home in relation to the copter in centi-degrees static int32_t home_bearing; // distance between plane and home in cm static int32_t home_distance; // distance between plane and next waypoint in cm. static uint32_t wp_distance; // navigation mode - options include NAV_NONE, NAV_LOITER, NAV_CIRCLE, NAV_WP static uint8_t nav_mode; // Register containing the index of the current navigation command in the mission script static int16_t command_nav_index; // Register containing the index of the previous navigation command in the mission script // Used to manage the execution of conditional commands static uint8_t prev_nav_index; // Register containing the index of the current conditional command in the mission script static uint8_t command_cond_index; // Used to track the required WP navigation information // options include // NAV_ALTITUDE - have we reached the desired altitude? // NAV_LOCATION - have we reached the desired location? // NAV_DELAY - have we waited at the waypoint the desired time? static float lon_error, lat_error; // Used to report how many cm we are from the next waypoint or loiter target position static int16_t control_roll; // desired roll angle of copter in centi-degrees static int16_t control_pitch; // desired pitch angle of copter in centi-degrees static uint8_t rtl_state; // records state of rtl (initial climb, returning home, etc) static uint8_t land_state; // records state of land (flying to location, descending) //////////////////////////////////////////////////////////////////////////////// // SIMPLE Mode //////////////////////////////////////////////////////////////////////////////// // Used to track the orientation of the copter for Simple mode. This value is reset at each arming // or in SuperSimple mode when the copter leaves a 20m radius from home. static float simple_cos_yaw = 1.0; static float simple_sin_yaw; static int32_t super_simple_last_bearing; static float super_simple_cos_yaw = 1.0; static float super_simple_sin_yaw; // Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable static int32_t initial_armed_bearing; //////////////////////////////////////////////////////////////////////////////// // Rate contoller targets //////////////////////////////////////////////////////////////////////////////// static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame static int32_t roll_rate_target_ef; static int32_t pitch_rate_target_ef; static int32_t yaw_rate_target_ef; static int32_t roll_rate_target_bf; // body frame roll rate target static int32_t pitch_rate_target_bf; // body frame pitch rate target static int32_t yaw_rate_target_bf; // body frame yaw rate target //////////////////////////////////////////////////////////////////////////////// // Throttle variables //////////////////////////////////////////////////////////////////////////////// static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly static float throttle_avg; // g.throttle_cruise as a float static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only static float target_alt_for_reporting; // target altitude in cm for reporting (logs and ground station) //////////////////////////////////////////////////////////////////////////////// // ACRO Mode //////////////////////////////////////////////////////////////////////////////// // Used to control Axis lock static int32_t acro_roll; // desired roll angle while sport mode static int32_t acro_roll_rate; // desired roll rate while in acro mode static int32_t acro_pitch; // desired pitch angle while sport mode static int32_t acro_pitch_rate; // desired pitch rate while acro mode static int32_t acro_yaw_rate; // desired yaw rate while acro mode static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot // Filters #if FRAME_CONFIG == HELI_FRAME //static LowPassFilterFloat rate_roll_filter; // Rate Roll filter //static LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter #endif // HELI_FRAME //////////////////////////////////////////////////////////////////////////////// // Circle Mode / Loiter control //////////////////////////////////////////////////////////////////////////////// Vector3f circle_center; // circle position expressed in cm from home location. x = lat, y = lon // angle from the circle center to the copter's desired location. Incremented at circle_rate / second static float circle_angle; // the total angle (in radians) travelled static float circle_angle_total; // deg : how many times to circle as specified by mission command static uint8_t circle_desired_rotations; static float circle_angular_acceleration; // circle mode's angular acceleration static float circle_angular_velocity; // circle mode's angular velocity static float circle_angular_velocity_max; // circle mode's max angular velocity // How long we should stay in Loiter Mode for mission scripting (time in seconds) static uint16_t loiter_time_max; // How long have we been loitering - The start time in millis static uint32_t loiter_time; //////////////////////////////////////////////////////////////////////////////// // CH7 and CH8 save waypoint control //////////////////////////////////////////////////////////////////////////////// // This register tracks the current Mission Command index when writing // a mission using Ch7 or Ch8 aux switches in flight static int8_t aux_switch_wp_index; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// static AP_BattMonitor battery; //////////////////////////////////////////////////////////////////////////////// // Altitude //////////////////////////////////////////////////////////////////////////////// // The (throttle) controller desired altitude in cm static float controller_desired_alt; // The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP static int32_t altitude_error; // The cm/s we are moving up or down based on filtered data - Positive = UP static int16_t climb_rate; // The altitude as reported by Sonar in cm – Values are 20 to 700 generally. static int16_t sonar_alt; static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar static float target_sonar_alt; // desired altitude in cm above the ground // The altitude as reported by Baro in cm – Values can be quite high static int32_t baro_alt; //////////////////////////////////////////////////////////////////////////////// // flight modes //////////////////////////////////////////////////////////////////////////////// // Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes // Each Flight mode is a unique combination of these modes // // The current desired control scheme for Yaw static uint8_t yaw_mode = STABILIZE_YAW; // The current desired control scheme for roll and pitch / navigation static uint8_t roll_pitch_mode = STABILIZE_RP; // The current desired control scheme for altitude hold static uint8_t throttle_mode = STABILIZE_THR; //////////////////////////////////////////////////////////////////////////////// // flight specific //////////////////////////////////////////////////////////////////////////////// // An additional throttle added to keep the copter at the same altitude when banking static int16_t angle_boost; // counter to verify landings static uint16_t land_detector; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors //////////////////////////////////////////////////////////////////////////////// // home location is stored when we have a good GPS lock and arm the copter // Can be reset each the copter is re-armed static struct Location home; // Current location of the copter static struct Location current_loc; // Holds the current loaded command from the EEPROM for navigation static struct Location command_nav_queue; // Holds the current loaded command from the EEPROM for conditional scripts static struct Location command_cond_queue; //////////////////////////////////////////////////////////////////////////////// // Navigation Roll/Pitch functions //////////////////////////////////////////////////////////////////////////////// // The Commanded ROll from the autopilot based on optical flow sensor. static int32_t of_roll; // The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. static int32_t of_pitch; //////////////////////////////////////////////////////////////////////////////// // Navigation Throttle control //////////////////////////////////////////////////////////////////////////////// // The Commanded Throttle from the autopilot. static int16_t nav_throttle; // 0-1000 for throttle control // This is a simple counter to track the amount of throttle used during flight // This could be useful later in determining and debuging current usage and predicting battery life static uint32_t throttle_integrator; //////////////////////////////////////////////////////////////////////////////// // Navigation Yaw control //////////////////////////////////////////////////////////////////////////////// // The Commanded Yaw from the autopilot. static int32_t control_yaw; // Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION static Vector3f yaw_look_at_WP; // bearing from current location to the yaw_look_at_WP static int32_t yaw_look_at_WP_bearing; // yaw used for YAW_LOOK_AT_HEADING yaw_mode static int32_t yaw_look_at_heading; // Deg/s we should turn static int16_t yaw_look_at_heading_slew; //////////////////////////////////////////////////////////////////////////////// // Delay Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) static uint32_t condition_start; //////////////////////////////////////////////////////////////////////////////// // IMU variables //////////////////////////////////////////////////////////////////////////////// // Integration time (in seconds) for the gyros (DCM algorithm) // Updated with the fast loop static float G_Dt = 0.02; //////////////////////////////////////////////////////////////////////////////// // Inertial Navigation //////////////////////////////////////////////////////////////////////////////// static AP_InertialNav inertial_nav(&ahrs, &barometer, g_gps, gps_glitch); //////////////////////////////////////////////////////////////////////////////// // Waypoint navigation object // To-Do: move inertial nav up or other navigation variables down here //////////////////////////////////////////////////////////////////////////////// static AC_WPNav wp_nav(&inertial_nav, &ahrs, &g.pi_loiter_lat, &g.pi_loiter_lon, &g.pid_loiter_rate_lat, &g.pid_loiter_rate_lon); //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// static int16_t pmTest1; // System Timers // -------------- // Time in microseconds of main control loop static uint32_t fast_loopTimer; // Counter of main loop executions. Used for performance monitoring and failsafe processing static uint16_t mainLoop_count; // Loiter timer - Records how long we have been in loiter static uint32_t rtl_loiter_start_time; // Used to exit the roll and pitch auto trim function static uint8_t auto_trim_counter; // Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7) static AP_Relay relay; // handle repeated servo and relay events static AP_ServoRelayEvents ServoRelayEvents(relay); //Reference to the camera object (it uses the relay object inside it) #if CAMERA == ENABLED static AP_Camera camera(&relay); #endif // a pin for reading the receiver RSSI voltage. static AP_HAL::AnalogSource* rssi_analog_source; #if CLI_ENABLED == ENABLED static int8_t setup_show (uint8_t argc, const Menu::arg *argv); #endif // Camera/Antenna mount tracking and stabilisation stuff // -------------------------------------- #if MOUNT == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? static AP_Mount camera_mount(¤t_loc, g_gps, ahrs, 0); #endif #if MOUNT2 == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? static AP_Mount camera_mount2(¤t_loc, g_gps, ahrs, 1); #endif //////////////////////////////////////////////////////////////////////////////// // AC_Fence library to reduce fly-aways //////////////////////////////////////////////////////////////////////////////// #if AC_FENCE == ENABLED AC_Fence fence(&inertial_nav); #endif //////////////////////////////////////////////////////////////////////////////// // Crop Sprayer //////////////////////////////////////////////////////////////////////////////// #if SPRAYER == ENABLED static AC_Sprayer sprayer(&inertial_nav); #endif //////////////////////////////////////////////////////////////////////////////// // EPM Cargo Griper //////////////////////////////////////////////////////////////////////////////// #if EPM_ENABLED == ENABLED static AP_EPM epm; #endif //////////////////////////////////////////////////////////////////////////////// // function definitions to keep compiler from complaining about undeclared functions //////////////////////////////////////////////////////////////////////////////// void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate); static void pre_arm_checks(bool display_failure); //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// // setup the var_info table AP_Param param_loader(var_info, WP_START_BYTE); /* scheduler table - all regular tasks apart from the fast_loop() should be listed here, along with how often they should be called (in 10ms units) and the maximum time they are expected to take (in microseconds) */ static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = { { throttle_loop, 2, 450 }, { update_GPS, 2, 900 }, { update_nav_mode, 1, 400 }, { update_batt_compass, 10, 720 }, { read_aux_switches, 10, 50 }, { arm_motors_check, 10, 10 }, { auto_trim, 10, 140 }, { update_altitude, 10, 1000 }, { run_nav_updates, 10, 800 }, { three_hz_loop, 33, 90 }, { compass_accumulate, 2, 420 }, { barometer_accumulate, 2, 250 }, #if FRAME_CONFIG == HELI_FRAME { check_dynamic_flight, 2, 100 }, #endif { update_notify, 2, 100 }, { one_hz_loop, 100, 420 }, { crash_check, 10, 20 }, { gcs_check_input, 2, 550 }, { gcs_send_heartbeat, 100, 150 }, { gcs_send_deferred, 2, 720 }, { gcs_data_stream_send, 2, 950 }, { update_mount, 2, 450 }, { ten_hz_logging_loop, 10, 300 }, { fifty_hz_logging_loop, 2, 220 }, { perf_update, 1000, 200 }, { read_receiver_rssi, 10, 50 }, #ifdef USERHOOK_FASTLOOP { userhook_FastLoop, 1, 100 }, #endif #ifdef USERHOOK_50HZLOOP { userhook_50Hz, 2, 100 }, #endif #ifdef USERHOOK_MEDIUMLOOP { userhook_MediumLoop, 10, 100 }, #endif #ifdef USERHOOK_SLOWLOOP { userhook_SlowLoop, 30, 100 }, #endif #ifdef USERHOOK_SUPERSLOWLOOP { userhook_SuperSlowLoop,100, 100 }, #endif }; void setup() { cliSerial = hal.console; // Load the default values of variables listed in var_info[]s AP_Param::setup_sketch_defaults(); init_ardupilot(); // initialise the main loop scheduler scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0])); } /* if the compass is enabled then try to accumulate a reading */ static void compass_accumulate(void) { if (g.compass_enabled) { compass.accumulate(); } } /* try to accumulate a baro reading */ static void barometer_accumulate(void) { barometer.accumulate(); } static void perf_update(void) { if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); if (scheduler.debug()) { cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"), (unsigned)perf_info_get_num_long_running(), (unsigned)perf_info_get_num_loops(), (unsigned long)perf_info_get_max_time()); } perf_info_reset(); pmTest1 = 0; } void loop() { // wait for an INS sample if (!ins.wait_for_sample(1000)) { Log_Write_Error(ERROR_SUBSYSTEM_MAIN, ERROR_CODE_MAIN_INS_DELAY); return; } uint32_t timer = micros(); // check loop time perf_info_check_loop_time(timer - fast_loopTimer); // used by PI Loops G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; fast_loopTimer = timer; // for mainloop failure monitoring mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); // tell the scheduler one tick has passed scheduler.tick(); // run all the tasks that are due to run. Note that we only // have to call this once per loop, as the tasks are scheduled // in multiples of the main loop tick. So if they don't run on // the first call to the scheduler they won't run on a later // call until scheduler.tick() is called again uint32_t time_available = (timer + 10000) - micros(); scheduler.run(time_available - 300); } // Main loop - 100hz static void fast_loop() { // IMU DCM Algorithm // -------------------- read_AHRS(); // Acrobatic control if (ap.do_flip) { if(abs(g.rc_1.control_in) < 4000) { // calling roll_flip will override the desired roll rate and throttle output roll_flip(); }else{ // force an exit from the loop if we are not hands off sticks. ap.do_flip = false; Log_Write_Event(DATA_EXIT_FLIP); } } // run low level rate controllers that only require IMU data attitude_control.rate_controller_run(); // write out the servo PWM values // ------------------------------ set_servos_4(); // Inertial Nav // -------------------- read_inertia(); // optical flow // -------------------- #if OPTFLOW == ENABLED if(g.optflow_enabled) { update_optical_flow(); } #endif // OPTFLOW == ENABLED // Read radio and 3-position switch on radio // ----------------------------------------- read_radio(); read_control_switch(); // run the attitude controllers update_flight_mode(); } // throttle_loop - should be run at 50 hz // --------------------------- static void throttle_loop() { // get altitude and climb rate from inertial lib read_inertial_altitude(); // Update the throttle ouput // ------------------------- update_throttle_mode(); // check if we've landed update_land_detector(); // check auto_armed status update_auto_armed(); #if FRAME_CONFIG == HELI_FRAME // update rotor speed heli_update_rotor_speed_targets(); // update trad heli swash plate movement heli_update_landing_swash(); #endif } // update_mount - update camera mount position // should be run at 50hz static void update_mount() { #if MOUNT == ENABLED // update camera mount's position camera_mount.update_mount_position(); #endif #if MOUNT2 == ENABLED // update camera mount's position camera_mount2.update_mount_position(); #endif #if CAMERA == ENABLED camera.trigger_pic_cleanup(); #endif } // update_batt_compass - read battery and compass // should be called at 10hz static void update_batt_compass(void) { // read battery before compass because it may be used for motor interference compensation read_battery(); #if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode if(g.compass_enabled) { if (compass.read()) { compass.null_offsets(); } // log compass information if (g.log_bitmask & MASK_LOG_COMPASS) { Log_Write_Compass(); } } #endif // record throttle output throttle_integrator += g.rc_3.servo_out; } // ten_hz_logging_loop // should be run at 10hz static void ten_hz_logging_loop() { if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) { Log_Write_Attitude(); } if (g.log_bitmask & MASK_LOG_RCIN) { DataFlash.Log_Write_RCIN(); } if (g.log_bitmask & MASK_LOG_RCOUT) { DataFlash.Log_Write_RCOUT(); } } // fifty_hz_logging_loop // should be run at 50hz static void fifty_hz_logging_loop() { #if HIL_MODE != HIL_MODE_DISABLED // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif #if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) { Log_Write_Attitude(); } if (g.log_bitmask & MASK_LOG_IMU) { DataFlash.Log_Write_IMU(ins); } #endif } // three_hz_loop - 3.3hz loop static void three_hz_loop() { // check if we've lost contact with the ground station failsafe_gcs_check(); #if AC_FENCE == ENABLED // check if we have breached a fence fence_check(); #endif // AC_FENCE_ENABLED #if SPRAYER == ENABLED sprayer.update(); #endif update_events(); if(g.radio_tuning > 0) tuning(); } // one_hz_loop - runs at 1Hz static void one_hz_loop() { if (g.log_bitmask != 0) { Log_Write_Data(DATA_AP_STATE, ap.value); } // pass latest alt hold kP value to navigation controller wp_nav.set_althold_kP(g.pi_alt_hold.kP()); // update latest lean angle to navigation controller wp_nav.set_lean_angle_max(aparm.angle_max); // log battery info to the dataflash if (g.log_bitmask & MASK_LOG_CURRENT) { Log_Write_Current(); } // perform pre-arm checks & display failures every 30 seconds static uint8_t pre_arm_display_counter = 15; pre_arm_display_counter++; if (pre_arm_display_counter >= 30) { pre_arm_checks(true); pre_arm_display_counter = 0; }else{ pre_arm_checks(false); } // auto disarm checks auto_disarm_check(); if (!motors.armed()) { // make it possible to change ahrs orientation at runtime during initial config ahrs.set_orientation(); // check the user hasn't updated the frame orientation motors.set_frame_orientation(g.frame_orientation); } // update assigned functions and enable auxiliar servos RC_Channel_aux::enable_aux_servos(); #if MOUNT == ENABLED camera_mount.update_mount_type(); #endif #if MOUNT2 == ENABLED camera_mount2.update_mount_type(); #endif check_usb_mux(); } // called at 100hz but data from sensor only arrives at 20 Hz #if OPTFLOW == ENABLED static void update_optical_flow(void) { static uint32_t last_of_update = 0; static uint8_t of_log_counter = 0; // if new data has arrived, process it if( optflow.last_update != last_of_update ) { last_of_update = optflow.last_update; optflow.update_position(ahrs.roll, ahrs.pitch, ahrs.sin_yaw(), ahrs.cos_yaw(), current_loc.alt); // updates internal lon and lat with estimation based on optical flow // write to log at 5hz of_log_counter++; if( of_log_counter >= 4 ) { of_log_counter = 0; if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } } } #endif // OPTFLOW == ENABLED // called at 50hz static void update_GPS(void) { static uint32_t last_gps_reading; // time of last gps message static uint8_t ground_start_count = 10; // counter used to grab at least 10 reads before commiting the Home location bool report_gps_glitch; g_gps->update(); // logging and glitch protection run after every gps message if (g_gps->last_message_time_ms() != last_gps_reading) { last_gps_reading = g_gps->last_message_time_ms(); // log GPS message if (g.log_bitmask & MASK_LOG_GPS) { DataFlash.Log_Write_GPS(g_gps, current_loc.alt); } // run glitch protection and update AP_Notify if home has been initialised if (ap.home_is_set) { gps_glitch.check_position(); report_gps_glitch = (gps_glitch.glitching() && !ap.usb_connected); if (AP_Notify::flags.gps_glitching != report_gps_glitch) { if (gps_glitch.glitching()) { Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_GPS_GLITCH); }else{ Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_ERROR_RESOLVED); } AP_Notify::flags.gps_glitching = report_gps_glitch; } } } // checks to initialise home and take location based pictures if (g_gps->new_data && g_gps->status() >= GPS::GPS_OK_FIX_3D) { // clear new data flag g_gps->new_data = false; // check if we can initialise home yet if (!ap.home_is_set) { // if we have a 3d lock and valid location if(g_gps->status() >= GPS::GPS_OK_FIX_3D && g_gps->latitude != 0) { if( ground_start_count > 0 ) { ground_start_count--; }else{ // after 10 successful reads store home location // ap.home_is_set will be true so this will only happen once ground_start_count = 0; init_home(); // set system clock for log timestamps hal.util->set_system_clock(g_gps->time_epoch_usec()); if (g.compass_enabled) { // Set compass declination automatically compass.set_initial_location(g_gps->latitude, g_gps->longitude); } } }else{ // start again if we lose 3d lock ground_start_count = 10; } } #if CAMERA == ENABLED if (camera.update_location(current_loc) == true) { do_take_picture(); } #endif } // check for loss of gps failsafe_gps_check(); } // set_yaw_mode - update yaw mode and initialise any variables required bool set_yaw_mode(uint8_t new_yaw_mode) { // boolean to ensure proper initialisation of throttle modes bool yaw_initialised = false; // return immediately if no change if( new_yaw_mode == yaw_mode ) { return true; } switch( new_yaw_mode ) { case YAW_HOLD: yaw_initialised = true; break; case YAW_ACRO: yaw_initialised = true; acro_yaw_rate = 0; break; case YAW_LOOK_AT_NEXT_WP: if( ap.home_is_set ) { yaw_initialised = true; } break; case YAW_LOOK_AT_LOCATION: if( ap.home_is_set ) { // update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP); yaw_initialised = true; } break; case YAW_CIRCLE: if( ap.home_is_set ) { // set yaw to point to center of circle yaw_look_at_WP = circle_center; // initialise bearing to current heading yaw_look_at_WP_bearing = ahrs.yaw_sensor; yaw_initialised = true; } break; case YAW_LOOK_AT_HEADING: yaw_initialised = true; break; case YAW_LOOK_AT_HOME: if( ap.home_is_set ) { yaw_initialised = true; } break; case YAW_LOOK_AHEAD: if( ap.home_is_set ) { yaw_initialised = true; } break; case YAW_DRIFT: yaw_initialised = true; break; case YAW_RESETTOARMEDYAW: control_yaw = ahrs.yaw_sensor; // store current yaw so we can start rotating back to correct one yaw_initialised = true; break; } // if initialisation has been successful update the yaw mode if( yaw_initialised ) { yaw_mode = new_yaw_mode; } // return success or failure return yaw_initialised; } // update_yaw_mode - run high level yaw controllers // 100hz update rate void update_yaw_mode(void) { int16_t pilot_yaw = g.rc_4.control_in; // do not process pilot's yaw input during radio failsafe if (failsafe.radio) { pilot_yaw = 0; } switch(yaw_mode) { case YAW_HOLD: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; } // heading hold at heading held in control_yaw but allow input from pilot get_yaw_rate_stabilized_ef(pilot_yaw); break; case YAW_ACRO: // pilot controlled yaw using rate controller get_yaw_rate_stabilized_bf(pilot_yaw); break; case YAW_LOOK_AT_NEXT_WP: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; }else{ // point towards next waypoint (no pilot input accepted) // we don't use wp_bearing because we don't want the copter to turn too much during flight control_yaw = get_yaw_slew(control_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE); } get_stabilize_yaw(control_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if (pilot_yaw != 0) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_LOCATION: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; } // point towards a location held in yaw_look_at_WP get_look_at_yaw(); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if (pilot_yaw != 0) { set_yaw_mode(YAW_HOLD); } break; case YAW_CIRCLE: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; } // points toward the center of the circle or does a panorama get_circle_yaw(); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if (pilot_yaw != 0) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_HOME: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; }else{ // keep heading always pointing at home with no pilot input allowed control_yaw = get_yaw_slew(control_yaw, home_bearing, AUTO_YAW_SLEW_RATE); } get_stabilize_yaw(control_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if (pilot_yaw != 0) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_HEADING: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; }else{ // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed control_yaw = get_yaw_slew(control_yaw, yaw_look_at_heading, yaw_look_at_heading_slew); } get_stabilize_yaw(control_yaw); break; case YAW_LOOK_AHEAD: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; } // Commanded Yaw to automatically look ahead. get_look_ahead_yaw(pilot_yaw); break; case YAW_DRIFT: // if we have landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; } get_yaw_drift(); break; case YAW_RESETTOARMEDYAW: // if we are landed reset yaw target to current heading if (ap.land_complete) { control_yaw = ahrs.yaw_sensor; }else{ // changes yaw to be same as when quad was armed control_yaw = get_yaw_slew(control_yaw, initial_armed_bearing, AUTO_YAW_SLEW_RATE); } get_stabilize_yaw(control_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if (pilot_yaw != 0) { set_yaw_mode(YAW_HOLD); } break; } } // get yaw mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL uint8_t get_wp_yaw_mode(bool rtl) { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: return YAW_LOOK_AT_NEXT_WP; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if( rtl ) { return YAW_HOLD; }else{ return YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return YAW_LOOK_AHEAD; break; default: return YAW_HOLD; break; } } // set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode) { // boolean to ensure proper initialisation of throttle modes bool roll_pitch_initialised = false; // return immediately if no change if( new_roll_pitch_mode == roll_pitch_mode ) { return true; } switch( new_roll_pitch_mode ) { case ROLL_PITCH_STABLE: reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in); roll_pitch_initialised = true; break; case ROLL_PITCH_ACRO: // reset acro level rates acro_roll_rate = 0; acro_pitch_rate = 0; roll_pitch_initialised = true; break; case ROLL_PITCH_STABLE_OF: case ROLL_PITCH_DRIFT: reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in); roll_pitch_initialised = true; break; case ROLL_PITCH_AUTO: case ROLL_PITCH_LOITER: case ROLL_PITCH_SPORT: roll_pitch_initialised = true; break; #if AUTOTUNE == ENABLED case ROLL_PITCH_AUTOTUNE: // only enter autotune mode from stabilized roll-pitch mode when armed and flying if (roll_pitch_mode == ROLL_PITCH_STABLE && motors.armed() && !ap.land_complete) { reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in); // auto_tune_start returns true if it wants the roll-pitch mode changed to autotune roll_pitch_initialised = auto_tune_start(); } break; #endif } // if initialisation has been successful update the yaw mode if( roll_pitch_initialised ) { exit_roll_pitch_mode(roll_pitch_mode); roll_pitch_mode = new_roll_pitch_mode; } // return success or failure return roll_pitch_initialised; } // exit_roll_pitch_mode - peforms any code required when exiting the current roll-pitch mode void exit_roll_pitch_mode(uint8_t old_roll_pitch_mode) { #if AUTOTUNE == ENABLED if (old_roll_pitch_mode == ROLL_PITCH_AUTOTUNE) { auto_tune_stop(); } #endif } // update_flight_mode - calls the appropriate attitude controllers based on flight mode // called at 100hz or more static void update_flight_mode() { switch (control_mode) { case ACRO: acro_run(); break; case STABILIZE: stabilize_run(); break; case ALT_HOLD: althold_run(); break; case AUTO: auto_run(); break; case CIRCLE: circle_run(); break; case LOITER: loiter_run(); break; case GUIDED: guided_run(); break; case LAND: land_run(); break; case RTL: rtl_run(); break; case OF_LOITER: ofloiter_run(); break; case DRIFT: drift_run(); break; case SPORT: sport_run(); break; } } // update_roll_pitch_mode - run high level roll and pitch controllers // 100hz update rate void update_roll_pitch_mode(void) { switch(roll_pitch_mode) { case ROLL_PITCH_ACRO: // copy user input for reporting purposes control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; #if FRAME_CONFIG == HELI_FRAME // ACRO does not get SIMPLE mode ability if (motors.has_flybar()) { g.rc_1.servo_out = g.rc_1.control_in; g.rc_2.servo_out = g.rc_2.control_in; }else{ acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*ahrs.cos_pitch(); get_roll_rate_stabilized_bf(g.rc_1.control_in); get_pitch_rate_stabilized_bf(g.rc_2.control_in); get_acro_level_rates(); } #else // !HELI_FRAME acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*ahrs.cos_pitch(); get_roll_rate_stabilized_bf(g.rc_1.control_in); get_pitch_rate_stabilized_bf(g.rc_2.control_in); get_acro_level_rates(); #endif // HELI_FRAME break; case ROLL_PITCH_AUTO: // copy latest output from nav controller to stabilize controller control_roll = wp_nav.get_desired_roll(); control_pitch = wp_nav.get_desired_pitch(); get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_STABLE_OF: // apply SIMPLE mode transform update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch); // mix in user control with optical flow control_roll = get_of_roll(control_roll); control_pitch = get_of_pitch(control_pitch); // call stabilize controller get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_DRIFT: get_roll_pitch_drift(); break; case ROLL_PITCH_LOITER: // apply SIMPLE mode transform update_simple_mode(); // update loiter target from user controls wp_nav.move_loiter_target(g.rc_1.control_in, g.rc_2.control_in, 0.01f); // copy latest output from nav controller to stabilize controller control_roll = wp_nav.get_desired_roll(); control_pitch = wp_nav.get_desired_pitch(); get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_SPORT: // apply SIMPLE mode transform update_simple_mode(); // copy user input for reporting purposes control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; get_roll_rate_stabilized_ef(g.rc_1.control_in); get_pitch_rate_stabilized_ef(g.rc_2.control_in); break; #if AUTOTUNE == ENABLED case ROLL_PITCH_AUTOTUNE: // apply SIMPLE mode transform if(ap.simple_mode && ap.new_radio_frame) { update_simple_mode(); } // convert pilot input to lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch); // pass desired roll, pitch to stabilize attitude controllers get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); // copy user input for reporting purposes get_autotune_roll_pitch_controller(g.rc_1.control_in, g.rc_2.control_in, g.rc_4.control_in); break; #endif } #if FRAME_CONFIG != HELI_FRAME if(g.rc_3.control_in == 0 && control_mode <= ACRO) { reset_rate_I(); } #endif //HELI_FRAME if(ap.new_radio_frame) { // clear new radio frame info ap.new_radio_frame = false; } } static void init_simple_bearing() { // capture current cos_yaw and sin_yaw values simple_cos_yaw = ahrs.cos_yaw(); simple_sin_yaw = ahrs.sin_yaw(); // initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000); super_simple_cos_yaw = simple_cos_yaw; super_simple_sin_yaw = simple_sin_yaw; // log the simple bearing to dataflash if (g.log_bitmask != 0) { Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor); } } // update_simple_mode - rotates pilot input if we are in simple mode void update_simple_mode(void) { float rollx, pitchx; // exit immediately if no new radio frame or not in simple mode if (ap.simple_mode == 0 || !ap.new_radio_frame) { return; } if (ap.simple_mode == 1) { // rotate roll, pitch input by -initial simple heading (i.e. north facing) rollx = g.rc_1.control_in*simple_cos_yaw - g.rc_2.control_in*simple_sin_yaw; pitchx = g.rc_1.control_in*simple_sin_yaw + g.rc_2.control_in*simple_cos_yaw; }else{ // rotate roll, pitch input by -super simple heading (reverse of heading to home) rollx = g.rc_1.control_in*super_simple_cos_yaw - g.rc_2.control_in*super_simple_sin_yaw; pitchx = g.rc_1.control_in*super_simple_sin_yaw + g.rc_2.control_in*super_simple_cos_yaw; } // rotate roll, pitch input from north facing to vehicle's perspective g.rc_1.control_in = rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw(); g.rc_2.control_in = -rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw(); } // update_super_simple_bearing - adjusts simple bearing based on location // should be called after home_bearing has been updated void update_super_simple_bearing(bool force_update) { // check if we are in super simple mode and at least 10m from home if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) { // check the bearing to home has changed by at least 5 degrees if (labs(super_simple_last_bearing - home_bearing) > 500) { super_simple_last_bearing = home_bearing; float angle_rad = radians((super_simple_last_bearing+18000)/100); super_simple_cos_yaw = cosf(angle_rad); super_simple_sin_yaw = sinf(angle_rad); } } } // throttle_mode_manual - returns true if the throttle is directly controlled by the pilot bool throttle_mode_manual(uint8_t thr_mode) { return (thr_mode == THROTTLE_MANUAL || thr_mode == THROTTLE_MANUAL_TILT_COMPENSATED || thr_mode == THROTTLE_MANUAL_HELI); } // set_throttle_mode - sets the throttle mode and initialises any variables as required bool set_throttle_mode( uint8_t new_throttle_mode ) { // boolean to ensure proper initialisation of throttle modes bool throttle_initialised = false; // return immediately if no change if( new_throttle_mode == throttle_mode ) { return true; } // initialise any variables required for the new throttle mode switch(new_throttle_mode) { case THROTTLE_MANUAL: case THROTTLE_MANUAL_TILT_COMPENSATED: throttle_accel_deactivate(); // this controller does not use accel based throttle controller altitude_error = 0; // clear altitude error reported to GCS throttle_initialised = true; break; case THROTTLE_HOLD: case THROTTLE_AUTO: controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude wp_nav.set_desired_alt(controller_desired_alt); // same as above but for loiter controller if (throttle_mode_manual(throttle_mode)) { // reset the alt hold I terms if previous throttle mode was manual reset_throttle_I(); set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(g.rc_3.control_in)); } throttle_initialised = true; break; case THROTTLE_LAND: reset_land_detector(); // initialise land detector controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude throttle_initialised = true; break; #if FRAME_CONFIG == HELI_FRAME case THROTTLE_MANUAL_HELI: throttle_accel_deactivate(); // this controller does not use accel based throttle controller altitude_error = 0; // clear altitude error reported to GCS throttle_initialised = true; break; #endif } // update the throttle mode if( throttle_initialised ) { throttle_mode = new_throttle_mode; // reset some variables used for logging desired_climb_rate = 0; nav_throttle = 0; } // return success or failure return throttle_initialised; } // update_throttle_mode - run high level throttle controllers // 50 hz update rate void update_throttle_mode(void) { int16_t pilot_climb_rate; int16_t pilot_throttle_scaled; if(ap.do_flip) // this is pretty bad but needed to flip in AP modes. return; #if FRAME_CONFIG != HELI_FRAME // do not run throttle controllers if motors disarmed if( !motors.armed() ) { set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command set_target_alt_for_reporting(0); return; } #endif // FRAME_CONFIG != HELI_FRAME switch(throttle_mode) { case THROTTLE_MANUAL: // completely manual throttle if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); }else{ // send pilot's output directly to motors pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in); set_throttle_out(pilot_throttle_scaled, false); // update estimate of throttle cruise #if FRAME_CONFIG == HELI_FRAME update_throttle_cruise(motors.get_collective_out()); #else update_throttle_cruise(pilot_throttle_scaled); #endif //HELI_FRAME // check if we've taken off yet if (!ap.takeoff_complete && motors.armed()) { if (pilot_throttle_scaled > g.throttle_cruise) { // we must be in the air by now set_takeoff_complete(true); } } } set_target_alt_for_reporting(0); break; case THROTTLE_MANUAL_TILT_COMPENSATED: // manual throttle but with angle boost if (g.rc_3.control_in <= 0) { set_throttle_out(0, false); // no need for angle boost with zero throttle }else{ pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in); set_throttle_out(pilot_throttle_scaled, true); // update estimate of throttle cruise #if FRAME_CONFIG == HELI_FRAME update_throttle_cruise(motors.get_collective_out()); #else update_throttle_cruise(pilot_throttle_scaled); #endif //HELI_FRAME if (!ap.takeoff_complete && motors.armed()) { if (pilot_throttle_scaled > g.throttle_cruise) { // we must be in the air by now set_takeoff_complete(true); } } } set_target_alt_for_reporting(0); break; case THROTTLE_HOLD: if(ap.auto_armed) { // alt hold plus pilot input of climb rate pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); // special handling if we have landed if (ap.land_complete) { if (pilot_climb_rate > 0) { // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); }else{ // move throttle to minimum to keep us on the ground set_throttle_out(0, false); // deactivate accel based throttle controller (it will be automatically re-enabled when alt-hold controller next runs) throttle_accel_deactivate(); } } // check land_complete flag again in case it was changed above if (!ap.land_complete) { if( sonar_alt_health >= SONAR_ALT_HEALTH_MAX ) { // if sonar is ok, use surface tracking get_throttle_surface_tracking(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us }else{ // if no sonar fall back stabilize rate controller get_throttle_rate_stabilized(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us } } }else{ // pilot's throttle must be at zero so keep motors off set_throttle_out(0, false); // deactivate accel based throttle controller throttle_accel_deactivate(); set_target_alt_for_reporting(0); } break; case THROTTLE_AUTO: // auto pilot altitude controller with target altitude held in wp_nav.get_desired_alt() if(ap.auto_armed) { // special handling if we are just taking off if (ap.land_complete) { // tell motors to do a slow start. motors.slow_start(true); } get_throttle_althold_with_slew(wp_nav.get_desired_alt(), -wp_nav.get_descent_velocity(), wp_nav.get_climb_velocity()); set_target_alt_for_reporting(wp_nav.get_desired_alt()); // To-Do: return get_destination_alt if we are flying to a waypoint }else{ // pilot's throttle must be at zero so keep motors off set_throttle_out(0, false); // deactivate accel based throttle controller throttle_accel_deactivate(); set_target_alt_for_reporting(0); } break; case THROTTLE_LAND: // landing throttle controller get_throttle_land(); set_target_alt_for_reporting(0); break; #if FRAME_CONFIG == HELI_FRAME case THROTTLE_MANUAL_HELI: // trad heli manual throttle controller // send pilot's output directly to swash plate pilot_throttle_scaled = get_pilot_desired_collective(g.rc_3.control_in); set_throttle_out(pilot_throttle_scaled, false); // update estimate of throttle cruise update_throttle_cruise(motors.get_collective_out()); set_target_alt_for_reporting(0); break; #endif // HELI_FRAME } } // set_target_alt_for_reporting - set target altitude in cm for reporting purposes (logs and gcs) static void set_target_alt_for_reporting(float alt_cm) { target_alt_for_reporting = alt_cm; } // get_target_alt_for_reporting - returns target altitude in cm for reporting purposes (logs and gcs) static float get_target_alt_for_reporting() { return target_alt_for_reporting; } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE != HIL_MODE_DISABLED // update hil before ahrs update gcs_check_input(); #endif ahrs.update(); omega = ins.get_gyro(); } // read baro and sonar altitude at 20hz static void update_altitude() { #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake out the baro and Sonar baro_alt = g_gps->altitude_cm; if(g.sonar_enabled) { sonar_alt = baro_alt; } #else // read in baro altitude baro_alt = read_barometer(); // read in sonar altitude sonar_alt = read_sonar(); #endif // HIL_MODE == HIL_MODE_ATTITUDE // write altitude info to dataflash logs if (g.log_bitmask & MASK_LOG_CTUN) { Log_Write_Control_Tuning(); } } static void tuning(){ // exit immediately when radio failsafe is invoked so tuning values are not set to zero if (failsafe.radio || failsafe.radio_counter != 0) { return; } tuning_value = (float)g.rc_6.control_in / 1000.0f; g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 switch(g.radio_tuning) { // Roll, Pitch tuning case CH6_STABILIZE_ROLL_PITCH_KP: g.pi_stabilize_roll.kP(tuning_value); g.pi_stabilize_pitch.kP(tuning_value); break; case CH6_RATE_ROLL_PITCH_KP: g.pid_rate_roll.kP(tuning_value); g.pid_rate_pitch.kP(tuning_value); break; case CH6_RATE_ROLL_PITCH_KI: g.pid_rate_roll.kI(tuning_value); g.pid_rate_pitch.kI(tuning_value); break; case CH6_RATE_ROLL_PITCH_KD: g.pid_rate_roll.kD(tuning_value); g.pid_rate_pitch.kD(tuning_value); break; // Yaw tuning case CH6_STABILIZE_YAW_KP: g.pi_stabilize_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KP: g.pid_rate_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KD: g.pid_rate_yaw.kD(tuning_value); break; // Altitude and throttle tuning case CH6_ALTITUDE_HOLD_KP: g.pi_alt_hold.kP(tuning_value); break; case CH6_THROTTLE_RATE_KP: g.pid_throttle_rate.kP(tuning_value); break; case CH6_THROTTLE_RATE_KD: g.pid_throttle_rate.kD(tuning_value); break; case CH6_THROTTLE_ACCEL_KP: g.pid_throttle_accel.kP(tuning_value); break; case CH6_THROTTLE_ACCEL_KI: g.pid_throttle_accel.kI(tuning_value); break; case CH6_THROTTLE_ACCEL_KD: g.pid_throttle_accel.kD(tuning_value); break; // Loiter and navigation tuning case CH6_LOITER_POSITION_KP: g.pi_loiter_lat.kP(tuning_value); g.pi_loiter_lon.kP(tuning_value); break; case CH6_LOITER_RATE_KP: g.pid_loiter_rate_lon.kP(tuning_value); g.pid_loiter_rate_lat.kP(tuning_value); break; case CH6_LOITER_RATE_KI: g.pid_loiter_rate_lon.kI(tuning_value); g.pid_loiter_rate_lat.kI(tuning_value); break; case CH6_LOITER_RATE_KD: g.pid_loiter_rate_lon.kD(tuning_value); g.pid_loiter_rate_lat.kD(tuning_value); break; case CH6_WP_SPEED: // set waypoint navigation horizontal speed to 0 ~ 1000 cm/s wp_nav.set_horizontal_velocity(g.rc_6.control_in); break; // Acro roll pitch gain case CH6_ACRO_RP_KP: g.acro_rp_p = tuning_value; break; // Acro yaw gain case CH6_ACRO_YAW_KP: g.acro_yaw_p = tuning_value; break; case CH6_RELAY: if (g.rc_6.control_in > 525) relay.on(0); if (g.rc_6.control_in < 475) relay.off(0); break; #if FRAME_CONFIG == HELI_FRAME case CH6_HELI_EXTERNAL_GYRO: motors.ext_gyro_gain(g.rc_6.control_in); break; #endif case CH6_OPTFLOW_KP: g.pid_optflow_roll.kP(tuning_value); g.pid_optflow_pitch.kP(tuning_value); break; case CH6_OPTFLOW_KI: g.pid_optflow_roll.kI(tuning_value); g.pid_optflow_pitch.kI(tuning_value); break; case CH6_OPTFLOW_KD: g.pid_optflow_roll.kD(tuning_value); g.pid_optflow_pitch.kD(tuning_value); break; #if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode case CH6_AHRS_YAW_KP: ahrs._kp_yaw.set(tuning_value); break; case CH6_AHRS_KP: ahrs._kp.set(tuning_value); break; #endif case CH6_INAV_TC: // To-Do: allowing tuning TC for xy and z separately inertial_nav.set_time_constant_xy(tuning_value); inertial_nav.set_time_constant_z(tuning_value); break; case CH6_DECLINATION: // set declination to +-20degrees compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact break; case CH6_CIRCLE_RATE: // set circle rate g.circle_rate.set(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction break; case CH6_SONAR_GAIN: // set sonar gain g.sonar_gain.set(tuning_value); break; case CH6_LOIT_SPEED: // set max loiter speed to 0 ~ 1000 cm/s wp_nav.set_loiter_velocity(g.rc_6.control_in); break; } } AP_HAL_MAIN();