/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_BMP085.h" #if AP_BARO_BMP085_ENABLED #include #include #include #include extern const AP_HAL::HAL &hal; #define BMP085_OVERSAMPLING_ULTRALOWPOWER 0 #define BMP085_OVERSAMPLING_STANDARD 1 #define BMP085_OVERSAMPLING_HIGHRES 2 #define BMP085_OVERSAMPLING_ULTRAHIGHRES 3 #ifndef BMP085_EOC #define BMP085_EOC -1 #define OVERSAMPLING BMP085_OVERSAMPLING_ULTRAHIGHRES #else #define OVERSAMPLING BMP085_OVERSAMPLING_HIGHRES #endif AP_Baro_BMP085::AP_Baro_BMP085(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { } AP_Baro_Backend * AP_Baro_BMP085::probe(AP_Baro &baro, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } AP_Baro_BMP085 *sensor = new AP_Baro_BMP085(baro, std::move(dev)); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } bool AP_Baro_BMP085::_init() { if (!_dev) { return false; } union { uint8_t buff[22]; uint16_t wb[11]; } bb; // get pointer to i2c bus semaphore AP_HAL::Semaphore *sem = _dev->get_semaphore(); // take i2c bus semaphore WITH_SEMAPHORE(sem); if (BMP085_EOC >= 0) { _eoc = hal.gpio->channel(BMP085_EOC); _eoc->mode(HAL_GPIO_INPUT); } uint8_t id; if (!_dev->read_registers(0xD0, &id, 1)) { return false; } if (id!=0x55) { return false; // not BMP180 } _dev->read_registers(0xD1, &_vers, 1); bool prom_ok=false; _type=0; // We read the calibration data registers if (_dev->read_registers(0xAA, bb.buff, sizeof(bb.buff))) { prom_ok=true; } if (!prom_ok) { if (_read_prom((uint16_t *)&bb.wb[0])) { // BMP180 requires reads by 2 bytes prom_ok=true; _type=1; } } if (!prom_ok) { return false; } ac1 = ((int16_t)bb.buff[0] << 8) | bb.buff[1]; ac2 = ((int16_t)bb.buff[2] << 8) | bb.buff[3]; ac3 = ((int16_t)bb.buff[4] << 8) | bb.buff[5]; ac4 = ((int16_t)bb.buff[6] << 8) | bb.buff[7]; ac5 = ((int16_t)bb.buff[8] << 8) | bb.buff[9]; ac6 = ((int16_t)bb.buff[10]<< 8) | bb.buff[11]; b1 = ((int16_t)bb.buff[12] << 8) | bb.buff[13]; b2 = ((int16_t)bb.buff[14] << 8) | bb.buff[15]; mb = ((int16_t)bb.buff[16] << 8) | bb.buff[17]; mc = ((int16_t)bb.buff[18] << 8) | bb.buff[19]; md = ((int16_t)bb.buff[20] << 8) | bb.buff[21]; if ((ac1==0 || ac1==-1) || (ac2==0 || ac2==-1) || (ac3==0 || ac3==-1) || (ac4==0 || ac4==0xFFFF) || (ac5==0 || ac5==0xFFFF) || (ac6==0 || ac6==0xFFFF)) { return false; } _last_press_read_command_time = 0; _last_temp_read_command_time = 0; // Send a command to read temperature _cmd_read_temp(); _state = 0; _instance = _frontend.register_sensor(); _dev->set_device_type(DEVTYPE_BARO_BMP085); set_bus_id(_instance, _dev->get_bus_id()); _dev->register_periodic_callback(20000, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP085::_timer, void)); return true; } uint16_t AP_Baro_BMP085::_read_prom_word(uint8_t word) { const uint8_t reg = 0xAA + (word << 1); uint8_t val[2]; if (!_dev->transfer(®, 1, val, sizeof(val))) { return 0; } return (val[0] << 8) | val[1]; } bool AP_Baro_BMP085::_read_prom(uint16_t *prom) { bool all_zero = true; for (uint8_t i = 0; i < 11; i++) { prom[i] = _read_prom_word(i); if (prom[i] != 0) { all_zero = false; } } if (all_zero) { return false; } return true; } /* This is a state machine. Accumulate a new sensor reading. */ void AP_Baro_BMP085::_timer(void) { if (!_data_ready()) { return; } if (_state == 0) { _read_temp(); } else if (_read_pressure()) { _calculate(); } _state++; if (_state == 25) { _state = 0; _cmd_read_temp(); } else { _cmd_read_pressure(); } } /* transfer data to the frontend */ void AP_Baro_BMP085::update(void) { WITH_SEMAPHORE(_sem); if (!_has_sample) { return; } float temperature = 0.1f * _temp; float pressure = _pressure_filter.getf(); _copy_to_frontend(_instance, pressure, temperature); } // Send command to Read Pressure void AP_Baro_BMP085::_cmd_read_pressure() { _dev->write_register(0xF4, 0x34 + (OVERSAMPLING << 6)); _last_press_read_command_time = AP_HAL::millis(); } // Read raw pressure values bool AP_Baro_BMP085::_read_pressure() { uint8_t buf[3]; if (_dev->read_registers(0xF6, buf, sizeof(buf))) { _raw_pressure = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING); return true; } uint8_t xlsb; if (_dev->read_registers(0xF6, buf, 2) && _dev->read_registers(0xF8, &xlsb, 1)) { _raw_pressure = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)xlsb)) >> (8 - OVERSAMPLING); return true; } _last_press_read_command_time = AP_HAL::millis() + 1000; _dev->set_speed(AP_HAL::Device::SPEED_LOW); return false; } // Send Command to Read Temperature void AP_Baro_BMP085::_cmd_read_temp() { _dev->write_register(0xF4, 0x2E); _last_temp_read_command_time = AP_HAL::millis(); } // Read raw temperature values void AP_Baro_BMP085::_read_temp() { uint8_t buf[2]; int32_t _temp_sensor; if (!_dev->read_registers(0xF6, buf, sizeof(buf))) { _dev->set_speed(AP_HAL::Device::SPEED_LOW); return; } _temp_sensor = buf[0]; _temp_sensor = (_temp_sensor << 8) | buf[1]; _raw_temp = _temp_sensor; } // _calculate Temperature and Pressure in real units. void AP_Baro_BMP085::_calculate() { int32_t x1, x2, x3, b3, b5, b6, p; uint32_t b4, b7; int32_t tmp; // See Datasheet page 13 for this formulas // Based also on Jee Labs BMP085 example code. Thanks for share. // Temperature calculations x1 = ((int32_t)_raw_temp - ac6) * ac5 >> 15; x2 = ((int32_t) mc << 11) / (x1 + md); b5 = x1 + x2; _temp = (b5 + 8) >> 4; // Pressure calculations b6 = b5 - 4000; x1 = (b2 * (b6 * b6 >> 12)) >> 11; x2 = ac2 * b6 >> 11; x3 = x1 + x2; //b3 = (((int32_t) ac1 * 4 + x3)<> 2; // BAD //b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0 tmp = ac1; tmp = (tmp*4 + x3)<> 13; x2 = (b1 * (b6 * b6 >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (ac4 * (uint32_t)(x3 + 32768)) >> 15; b7 = ((uint32_t) _raw_pressure - b3) * (50000 >> OVERSAMPLING); p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; p += ((x1 + x2 + 3791) >> 4); if (!pressure_ok(p)) { return; } WITH_SEMAPHORE(_sem); _pressure_filter.apply(p); _has_sample = true; } bool AP_Baro_BMP085::_data_ready() { if (BMP085_EOC >= 0) { return _eoc->read(); } // No EOC pin: use time from last read instead. if (_state == 0) { return AP_HAL::millis() - _last_temp_read_command_time > 5u; } uint32_t conversion_time_msec; switch (OVERSAMPLING) { case BMP085_OVERSAMPLING_ULTRALOWPOWER: conversion_time_msec = 5; break; case BMP085_OVERSAMPLING_STANDARD: conversion_time_msec = 8; break; case BMP085_OVERSAMPLING_HIGHRES: conversion_time_msec = 14; break; case BMP085_OVERSAMPLING_ULTRAHIGHRES: conversion_time_msec = 26; break; default: break; } return AP_HAL::millis() - _last_press_read_command_time > conversion_time_msec; } #endif // AP_BARO_BMP085_ENABLED