#include "Copter.h" /* * Init and run calls for loiter flight mode */ // loiter_init - initialise loiter controller bool Copter::ModeLoiter::init(bool ignore_checks) { if (copter.position_ok() || ignore_checks) { if (!copter.failsafe.radio) { float target_roll, target_pitch; // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt); } else { // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason loiter_nav->clear_pilot_desired_acceleration(); } loiter_nav->init_target(); // initialise position and desired velocity if (!pos_control->is_active_z()) { pos_control->set_alt_target_to_current_alt(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); } return true; } else { return false; } } #if PRECISION_LANDING == ENABLED bool Copter::ModeLoiter::do_precision_loiter() { if (!_precision_loiter_enabled) { return false; } if (ap.land_complete_maybe) { return false; // don't move on the ground } // if the pilot *really* wants to move the vehicle, let them.... if (loiter_nav->get_pilot_desired_acceleration().length() > 50.0f) { return false; } if (!copter.precland.target_acquired()) { return false; // we don't have a good vector } return true; } void Copter::ModeLoiter::precision_loiter_xy() { loiter_nav->clear_pilot_desired_acceleration(); Vector2f target_pos, target_vel_rel; if (!copter.precland.get_target_position_cm(target_pos)) { target_pos.x = inertial_nav.get_position().x; target_pos.y = inertial_nav.get_position().y; } if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) { target_vel_rel.x = -inertial_nav.get_velocity().x; target_vel_rel.y = -inertial_nav.get_velocity().y; } pos_control->set_xy_target(target_pos.x, target_pos.y); pos_control->override_vehicle_velocity_xy(-target_vel_rel); } #endif // loiter_run - runs the loiter controller // should be called at 100hz or more void Copter::ModeLoiter::run() { LoiterModeState loiter_state; float target_roll, target_pitch; float target_yaw_rate = 0.0f; float target_climb_rate = 0.0f; float takeoff_climb_rate = 0.0f; // initialize vertical speed and acceleration pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up); pos_control->set_max_accel_z(g.pilot_accel_z); // process pilot inputs unless we are in radio failsafe if (!copter.failsafe.radio) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in()); target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up); } else { // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason loiter_nav->clear_pilot_desired_acceleration(); } // relax loiter target if we might be landed if (ap.land_complete_maybe) { loiter_nav->soften_for_landing(); } // Loiter State Machine Determination if (!motors->armed() || !motors->get_interlock()) { loiter_state = Loiter_MotorStopped; } else if (takeoff.running() || takeoff.triggered(target_climb_rate)) { loiter_state = Loiter_Takeoff; } else if (!ap.auto_armed || ap.land_complete) { loiter_state = Loiter_Landed; } else { loiter_state = Loiter_Flying; } // Loiter State Machine switch (loiter_state) { case Loiter_MotorStopped: motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN); #if FRAME_CONFIG == HELI_FRAME // force descent rate and call position controller pos_control->set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false); if (ap.land_complete_maybe) { pos_control->relax_alt_hold_controllers(0.0f); } #else loiter_nav->init_target(); attitude_control->reset_rate_controller_I_terms(); attitude_control->set_yaw_target_to_current_heading(); pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero #endif loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); pos_control->update_z_controller(); break; case Loiter_Takeoff: // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // initiate take-off if (!takeoff.running()) { takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f)); // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } // get takeoff adjusted pilot and takeoff climb rates takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate); // get avoidance adjusted climb rate target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); // run loiter controller loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); // update altitude target and call position controller pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false); pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt); pos_control->update_z_controller(); break; case Loiter_Landed: // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle) if (target_climb_rate < 0.0f) { motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); } else { motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); } loiter_nav->init_target(); attitude_control->reset_rate_controller_I_terms(); attitude_control->set_yaw_target_to_current_heading(); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0); pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero pos_control->update_z_controller(); break; case Loiter_Flying: // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); #if PRECISION_LANDING == ENABLED if (do_precision_loiter()) { precision_loiter_xy(); } #endif // run loiter controller loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); // adjust climb rate using rangefinder target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt); // get avoidance adjusted climb rate target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); // update altitude target and call position controller pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false); pos_control->update_z_controller(); break; } } uint32_t Copter::ModeLoiter::wp_distance() const { return loiter_nav->get_distance_to_target(); } int32_t Copter::ModeLoiter::wp_bearing() const { return loiter_nav->get_bearing_to_target(); }