#include "Tracker.h" /* * AntennaTracker parameter definitions * */ const AP_Param::Info Tracker::var_info[] = { // @Param: FORMAT_VERSION // @DisplayName: Eeprom format version number // @Description: This value is incremented when changes are made to the eeprom format // @User: Advanced GSCALAR(format_version, "FORMAT_VERSION", 0), // @Param: SYSID_THISMAV // @DisplayName: MAVLink system ID of this vehicle // @Description: Allows setting an individual system id for this vehicle to distinguish it from others on the same network // @Range: 1 255 // @User: Advanced GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID), // @Param: SYSID_MYGCS // @DisplayName: Ground station MAVLink system ID // @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match. // @Range: 1 255 // @Increment: 1 // @User: Advanced GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255), // @Param: SYSID_TARGET // @DisplayName: Target vehicle's MAVLink system ID // @Description: The identifier of the vehicle being tracked. This should be zero (to auto detect) or be the same as the SYSID_THISMAV parameter of the vehicle being tracked. // @Range: 1 255 // @User: Advanced GSCALAR(sysid_target, "SYSID_TARGET", 0), // @Param: YAW_SLEW_TIME // @DisplayName: Time for yaw to slew through its full range // @Description: This controls how rapidly the tracker will change the servo output for yaw. It is set as the number of seconds to do a full rotation. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update. // @Units: s // @Increment: 0.1 // @Range: 0 20 // @User: Standard GSCALAR(yaw_slew_time, "YAW_SLEW_TIME", 2), // @Param: PITCH_SLEW_TIME // @DisplayName: Time for pitch to slew through its full range // @Description: This controls how rapidly the tracker will change the servo output for pitch. It is set as the number of seconds to do a full range of pitch movement. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update. // @Units: s // @Increment: 0.1 // @Range: 0 20 // @User: Standard GSCALAR(pitch_slew_time, "PITCH_SLEW_TIME", 2), // @Param: MIN_REVERSE_TIME // @DisplayName: Minimum time to apply a yaw reversal // @Description: When the tracker detects it has reached the limit of servo movement in yaw it will reverse and try moving to the other extreme of yaw. This parameter controls the minimum time it should reverse for. It is used to cope with trackers that have a significant lag in movement to ensure they do move all the way around. // @Units: s // @Increment: 1 // @Range: 0 20 // @User: Standard GSCALAR(min_reverse_time, "MIN_REVERSE_TIME", 1), // @Param: START_LATITUDE // @DisplayName: Initial Latitude before GPS lock // @Description: Combined with START_LONGITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached. // @Units: deg // @Increment: 0.000001 // @Range: -90 90 // @User: Standard GSCALAR(start_latitude, "START_LATITUDE", 0), // @Param: START_LONGITUDE // @DisplayName: Initial Longitude before GPS lock // @Description: Combined with START_LATITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached. // @Units: deg // @Increment: 0.000001 // @Range: -180 180 // @User: Standard GSCALAR(start_longitude, "START_LONGITUDE", 0), // @Param: STARTUP_DELAY // @DisplayName: Delay before first servo movement from trim // @Description: This parameter can be used to force the servos to their trim value for a time on startup. This can help with some servo types // @Units: s // @Increment: 0.1 // @Range: 0 10 // @User: Standard GSCALAR(startup_delay, "STARTUP_DELAY", 0), // @Param: SERVO_PITCH_TYPE // @DisplayName: Type of servo system being used for pitch // @Description: This allows selection of position servos or on/off servos for pitch // @Values: 0:Position,1:OnOff,2:ContinuousRotation // @User: Standard GSCALAR(servo_pitch_type, "SERVO_PITCH_TYPE", SERVO_TYPE_POSITION), // @Param: SERVO_YAW_TYPE // @DisplayName: Type of servo system being used for yaw // @Description: This allows selection of position servos or on/off servos for yaw // @Values: 0:Position,1:OnOff,2:ContinuousRotation // @User: Standard GSCALAR(servo_yaw_type, "SERVO_YAW_TYPE", SERVO_TYPE_POSITION), // @Param: ONOFF_YAW_RATE // @DisplayName: Yaw rate for on/off servos // @Description: Rate of change of yaw in degrees/second for on/off servos // @Units: deg/s // @Increment: 0.1 // @Range: 0 50 // @User: Standard GSCALAR(onoff_yaw_rate, "ONOFF_YAW_RATE", 9.0f), // @Param: ONOFF_PITCH_RATE // @DisplayName: Pitch rate for on/off servos // @Description: Rate of change of pitch in degrees/second for on/off servos // @Units: deg/s // @Increment: 0.1 // @Range: 0 50 // @User: Standard GSCALAR(onoff_pitch_rate, "ONOFF_PITCH_RATE", 1.0f), // @Param: ONOFF_YAW_MINT // @DisplayName: Yaw minimum movement time // @Description: Minimum amount of time in seconds to move in yaw // @Units: s // @Increment: 0.01 // @Range: 0 2 // @User: Standard GSCALAR(onoff_yaw_mintime, "ONOFF_YAW_MINT", 0.1f), // @Param: ONOFF_PITCH_MINT // @DisplayName: Pitch minimum movement time // @Description: Minimum amount of time in seconds to move in pitch // @Units: s // @Increment: 0.01 // @Range: 0 2 // @User: Standard GSCALAR(onoff_pitch_mintime, "ONOFF_PITCH_MINT", 0.1f), // @Param: YAW_TRIM // @DisplayName: Yaw trim // @Description: Amount of extra yaw to add when tracking. This allows for small adjustments for an out of trim compass. // @Units: deg // @Increment: 0.1 // @Range: -10 10 // @User: Standard GSCALAR(yaw_trim, "YAW_TRIM", 0), // @Param: PITCH_TRIM // @DisplayName: Pitch trim // @Description: Amount of extra pitch to add when tracking. This allows for small adjustments for a badly calibrated barometer. // @Units: deg // @Increment: 0.1 // @Range: -10 10 // @User: Standard GSCALAR(pitch_trim, "PITCH_TRIM", 0), // @Param: YAW_RANGE // @DisplayName: Yaw Angle Range // @Description: Yaw axis total range of motion in degrees // @Units: deg // @Increment: 0.1 // @Range: 0 360 // @User: Standard GSCALAR(yaw_range, "YAW_RANGE", YAW_RANGE_DEFAULT), // @Param: DISTANCE_MIN // @DisplayName: Distance minimum to target // @Description: Tracker will track targets at least this distance away // @Units: m // @Increment: 1 // @Range: 0 100 // @User: Standard GSCALAR(distance_min, "DISTANCE_MIN", DISTANCE_MIN_DEFAULT), // @Param: ALT_SOURCE // @DisplayName: Altitude Source // @Description: What provides altitude information for vehicle. Vehicle only assumes tracker has same altitude as vehicle's home // @Values: 0:Barometer,1:GPS,2:GPS vehicle only // @User: Standard GSCALAR(alt_source, "ALT_SOURCE", 0), // @Param: MAV_UPDATE_RATE // @DisplayName: Mavlink Update Rate // @Description: The rate at which Mavlink updates position and baro data // @Units: Hz // @Increment: 1 // @Range: 1 10 // @User: Standard GSCALAR(mavlink_update_rate, "MAV_UPDATE_RATE", 1), // @Param: PITCH_MIN // @DisplayName: Minimum Pitch Angle // @Description: The lowest angle the pitch can reach // @Units: deg // @Increment: 1 // @Range: -90 0 // @User: Standard GSCALAR(pitch_min, "PITCH_MIN", PITCH_MIN_DEFAULT), // @Param: PITCH_MAX // @DisplayName: Maximum Pitch Angle // @Description: The highest angle the pitch can reach // @Units: deg // @Increment: 1 // @Range: 0 90 // @User: Standard GSCALAR(pitch_max, "PITCH_MAX", PITCH_MAX_DEFAULT), // barometer library // @Group: BARO // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "BARO", AP_Baro), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/AP_Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: SCHED_ // @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp GOBJECT(scheduler, "SCHED_", AP_Scheduler), // @Group: SR0_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[0], gcs0, "SR0_", GCS_MAVLINK_Parameters), #if MAVLINK_COMM_NUM_BUFFERS >= 2 // @Group: SR1_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[1], gcs1, "SR1_", GCS_MAVLINK_Parameters), #endif #if MAVLINK_COMM_NUM_BUFFERS >= 3 // @Group: SR2_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[2], gcs2, "SR2_", GCS_MAVLINK_Parameters), #endif #if MAVLINK_COMM_NUM_BUFFERS >= 4 // @Group: SR3_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[3], gcs3, "SR3_", GCS_MAVLINK_Parameters), #endif #if MAVLINK_COMM_NUM_BUFFERS >= 5 // @Group: SR4_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[4], gcs4, "SR4_", GCS_MAVLINK_Parameters), #endif #if MAVLINK_COMM_NUM_BUFFERS >= 6 // @Group: SR5_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[5], gcs5, "SR5_", GCS_MAVLINK_Parameters), #endif #if MAVLINK_COMM_NUM_BUFFERS >= 7 // @Group: SR6_ // @Path: GCS_Mavlink.cpp GOBJECTN(_gcs.chan_parameters[6], gcs6, "SR6_", GCS_MAVLINK_Parameters), #endif // @Param: LOG_BITMASK // @DisplayName: Log bitmask // @Description: 4 byte bitmap of log types to enable // @Bitmask: 0:ATTITUDE,1:GPS,2:RCIN,3:IMU,4:RCOUT,5:COMPASS,6:Battery // @User: Standard GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK), // @Group: INS // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS", AP_InertialSensor), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), #if AP_SIM_ENABLED // @Group: SIM_ // @Path: ../libraries/SITL/SITL.cpp GOBJECT(sitl, "SIM_", SITL::SIM), #endif // @Group: BRD_ // @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp GOBJECT(BoardConfig, "BRD_", AP_BoardConfig), #if HAL_MAX_CAN_PROTOCOL_DRIVERS // @Group: CAN_ // @Path: ../libraries/AP_CANManager/AP_CANManager.cpp GOBJECT(can_mgr, "CAN_", AP_CANManager), #endif // GPS driver // @Group: GPS // @Path: ../libraries/AP_GPS/AP_GPS.cpp GOBJECT(gps, "GPS", AP_GPS), // @Group: NTF_ // @Path: ../libraries/AP_Notify/AP_Notify.cpp GOBJECT(notify, "NTF_", AP_Notify), // @Group: RC // @Path: ../libraries/RC_Channel/RC_Channels_VarInfo.h GOBJECT(rc_channels, "RC", RC_Channels_Tracker), // @Group: SERVO // @Path: ../libraries/SRV_Channel/SRV_Channels.cpp GOBJECT(servo_channels, "SERVO", SRV_Channels), // @Group: SERIAL // @Path: ../libraries/AP_SerialManager/AP_SerialManager.cpp GOBJECT(serial_manager, "SERIAL", AP_SerialManager), // @Param: PITCH2SRV_P // @DisplayName: Pitch axis controller P gain // @Description: Pitch axis controller P gain. Converts the difference between desired pitch angle and actual pitch angle into a pitch servo pwm change // @Range: 0.0 3.0 // @Increment: 0.01 // @User: Standard // @Param: PITCH2SRV_I // @DisplayName: Pitch axis controller I gain // @Description: Pitch axis controller I gain. Corrects long-term difference in desired pitch angle vs actual pitch angle // @Range: 0.0 3.0 // @Increment: 0.01 // @User: Standard // @Param: PITCH2SRV_IMAX // @DisplayName: Pitch axis controller I gain maximum // @Description: Pitch axis controller I gain maximum. Constrains the maximum pwm change that the I gain will output // @Range: 0 4000 // @Increment: 10 // @Units: d% // @User: Standard // @Param: PITCH2SRV_D // @DisplayName: Pitch axis controller D gain // @Description: Pitch axis controller D gain. Compensates for short-term change in desired pitch angle vs actual pitch angle // @Range: 0.001 0.1 // @Increment: 0.001 // @User: Standard // @Param: PITCH2SRV_FF // @DisplayName: Pitch axis controller feed forward // @Description: Pitch axis controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: PITCH2SRV_FLTT // @DisplayName: Pitch axis controller target frequency in Hz // @Description: Pitch axis controller target frequency in Hz // @Range: 1 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: PITCH2SRV_FLTE // @DisplayName: Pitch axis controller error frequency in Hz // @Description: Pitch axis controller error frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: PITCH2SRV_FLTD // @DisplayName: Pitch axis controller derivative frequency in Hz // @Description: Pitch axis controller derivative frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: PITCH2SRV_SMAX // @DisplayName: Pitch slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: PITCH2SRV_PDMX // @DisplayName: Pitch axis controller PD sum maximum // @Description: Pitch axis controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 4000 // @Increment: 10 // @Units: d% // @User: Advanced // @Param: PITCH2SRV_D_FF // @DisplayName: Pitch Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.1 // @Increment: 0.001 // @User: Advanced // @Param: PITCH2SRV_NTF // @DisplayName: Pitch Target notch filter index // @Description: Pitch Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: PITCH2SRV_NEF // @DisplayName: Pitch Error notch filter index // @Description: Pitch Error notch filter index // @Range: 1 8 // @User: Advanced GGROUP(pidPitch2Srv, "PITCH2SRV_", AC_PID), // @Param: YAW2SRV_P // @DisplayName: Yaw axis controller P gain // @Description: Yaw axis controller P gain. Converts the difference between desired yaw angle (heading) and actual yaw angle into a yaw servo pwm change // @Range: 0.0 3.0 // @Increment: 0.01 // @User: Standard // @Param: YAW2SRV_I // @DisplayName: Yaw axis controller I gain // @Description: Yaw axis controller I gain. Corrects long-term difference in desired yaw angle (heading) vs actual yaw angle // @Range: 0.0 3.0 // @Increment: 0.01 // @User: Standard // @Param: YAW2SRV_IMAX // @DisplayName: Yaw axis controller I gain maximum // @Description: Yaw axis controller I gain maximum. Constrains the maximum pwm change that the I gain will output // @Range: 0 4000 // @Increment: 10 // @Units: d% // @User: Standard // @Param: YAW2SRV_D // @DisplayName: Yaw axis controller D gain // @Description: Yaw axis controller D gain. Compensates for short-term change in desired yaw angle (heading) vs actual yaw angle // @Range: 0.001 0.1 // @Increment: 0.001 // @User: Standard // @Param: YAW2SRV_FF // @DisplayName: Yaw axis controller feed forward // @Description: Yaw axis controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: YAW2SRV_FLTT // @DisplayName: Yaw axis controller target frequency in Hz // @Description: Yaw axis controller target frequency in Hz // @Range: 1 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: YAW2SRV_FLTE // @DisplayName: Yaw axis controller error frequency in Hz // @Description: Yaw axis controller error frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: YAW2SRV_FLTD // @DisplayName: Yaw axis controller derivative frequency in Hz // @Description: Yaw axis controller derivative frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: YAW2SRV_SMAX // @DisplayName: Yaw slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: YAW2SRV_PDMX // @DisplayName: Yaw axis controller PD sum maximum // @Description: Yaw axis controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 4000 // @Increment: 10 // @Units: d% // @User: Advanced // @Param: YAW2SRV_D_FF // @DisplayName: Yaw Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.1 // @Increment: 0.001 // @User: Advanced // @Param: YAW2SRV_NTF // @DisplayName: Yaw Target notch filter index // @Description: Yaw Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: YAW2SRV_NEF // @DisplayName: Yaw Error notch filter index // @Description: Yaw Error notch filter index // @Range: 1 8 // @User: Advanced GGROUP(pidYaw2Srv, "YAW2SRV_", AC_PID), #if AP_SCRIPTING_ENABLED // @Group: SCR_ // @Path: ../libraries/AP_Scripting/AP_Scripting.cpp GOBJECT(scripting, "SCR_", AP_Scripting), #endif // @Param: CMD_TOTAL // @DisplayName: Number of loaded mission items // @Description: Set to 1 if HOME location has been loaded by the ground station. Do not change this manually. // @Range: 1 255 // @User: Advanced GSCALAR(command_total, "CMD_TOTAL", 0), // @Group: BATT // @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp GOBJECT(battery, "BATT", AP_BattMonitor), // @Param: GCS_PID_MASK // @DisplayName: GCS PID tuning mask // @Description: bitmask of PIDs to send MAVLink PID_TUNING messages for // @User: Advanced // @Values: 0:None,1:Pitch,2:Yaw // @Bitmask: 0:Pitch,1:Yaw GSCALAR(gcs_pid_mask, "GCS_PID_MASK", 0), // @Param: SCAN_SPEED_YAW // @DisplayName: Speed at which to rotate the yaw axis in scan mode // @Description: This controls how rapidly the tracker will move the servos in SCAN mode // @Units: deg/s // @Increment: 1 // @Range: 0 100 // @User: Standard GSCALAR(scan_speed_yaw, "SCAN_SPEED_YAW", 2), // @Param: SCAN_SPEED_PIT // @DisplayName: Speed at which to rotate pitch axis in scan mode // @Description: This controls how rapidly the tracker will move the servos in SCAN mode // @Units: deg/s // @Increment: 1 // @Range: 0 100 // @User: Standard GSCALAR(scan_speed_pitch, "SCAN_SPEED_PIT", 5), // @Param: INITIAL_MODE // @DisplayName: Mode tracker will switch into after initialization // @Description: 0:MANUAL, 1:STOP, 2:SCAN, 10:AUTO // @User: Standard GSCALAR(initial_mode, "INITIAL_MODE", 10), // @Param: SAFE_DISARM_PWM // @DisplayName: PWM that will be output when disarmed or in stop mode // @Description: 0:zero pwm, 1:trim pwm // @User: Standard GSCALAR(disarm_pwm, "SAFE_DISARM_PWM", 0), // @Group: STAT // @Path: ../libraries/AP_Stats/AP_Stats.cpp GOBJECT(stats, "STAT", AP_Stats), // @Param: AUTO_OPTIONS // @DisplayName: Auto mode options // @Description: 1: Scan for unknown target // @User: Standard // @Values: 0:None, 1: Scan for unknown target in auto mode // @Bitmask: 0:Scan for unknown target GSCALAR(auto_opts, "AUTO_OPTIONS", 0), // @Group: // @Path: ../libraries/AP_Vehicle/AP_Vehicle.cpp PARAM_VEHICLE_INFO, // @Group: LOG // @Path: ../libraries/AP_Logger/AP_Logger.cpp GOBJECT(logger, "LOG", AP_Logger), #if HAL_NAVEKF2_AVAILABLE // @Group: EK2_ // @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp GOBJECTN(ahrs.EKF2, NavEKF2, "EK2_", NavEKF2), #endif #if HAL_NAVEKF3_AVAILABLE // @Group: EK3_ // @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp GOBJECTN(ahrs.EKF3, NavEKF3, "EK3_", NavEKF3), #endif AP_VAREND }; void Tracker::load_parameters(void) { if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { // erase all parameters hal.console->printf("Firmware change: erasing EEPROM...\n"); StorageManager::erase(); AP_Param::erase_all(); // save the current format version g.format_version.set_and_save(Parameters::k_format_version); hal.console->printf("done.\n"); } g.format_version.set_default(Parameters::k_format_version); uint32_t before = AP_HAL::micros(); // Load all auto-loaded EEPROM variables AP_Param::load_all(); hal.console->printf("load_all took %luus\n", (unsigned long)(AP_HAL::micros() - before)); #if HAL_HAVE_SAFETY_SWITCH // configure safety switch to allow stopping the motors while armed AP_Param::set_default_by_name("BRD_SAFETYOPTION", AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF| AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON| AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED); #endif }