// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #include "Rover.h" #if CLI_ENABLED == ENABLED // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", MENU_FUNC(process_logs)}, {"setup", MENU_FUNC(setup_mode)}, {"test", MENU_FUNC(test_mode)}, {"reboot", MENU_FUNC(reboot_board)}, {"help", MENU_FUNC(main_menu_help)} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits void Rover::run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void mavlink_delay_cb_static() { rover.mavlink_delay_cb(); } static void failsafe_check_static() { rover.failsafe_check(); } #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 AP_ADC_ADS7844 apm1_adc; #endif void Rover::init_ardupilot() { // initialise console serial port serial_manager.init_console(); cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n"), hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); BoardConfig.init(); // initialise serial ports serial_manager.init(); ServoRelayEvents.set_channel_mask(0xFFF0); set_control_channels(); battery.init(); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // init the GCS gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup serial port for telem1 gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); #if MAVLINK_COMM_NUM_BUFFERS > 2 // setup serial port for telem2 gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1); #endif #if MAVLINK_COMM_NUM_BUFFERS > 3 // setup serial port for fourth telemetry port (not used by default) gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2); #endif // setup frsky telemetry #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.init(serial_manager); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 apm1_adc.Init(); // APM ADC library initialization #endif if (g.compass_enabled==true) { if (!compass.init()|| !compass.read()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference } } // initialise sonar init_sonar(); // and baro for EKF init_barometer(); // Do GPS init gps.init(&DataFlash, serial_manager); rc_override_active = hal.rcin->set_overrides(rc_override, 8); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(serial_manager); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if CLI_ENABLED == ENABLED // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // if (g.cli_enabled == 1) { const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println_P(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println_P(msg); } } #endif init_capabilities(); startup_ground(); set_mode((enum mode)g.initial_mode.get()); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** void Rover::startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(MAV_SEVERITY_WARNING,PSTR(" GROUND START")); #if(GROUND_START_DELAY > 0) gcs_send_text_P(MAV_SEVERITY_WARNING,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif //IMU ground start //------------------------ // startup_INS_ground(); // read the radio to set trims // --------------------------- trim_radio(); // initialise mission library mission.init(); // we don't want writes to the serial port to cause us to pause // so set serial ports non-blocking once we are ready to drive serial_manager.set_blocking_writes_all(false); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); gcs_send_text_P(MAV_SEVERITY_WARNING,PSTR("\n\n Ready to drive.")); } /* set the in_reverse flag reset the throttle integrator if this changes in_reverse */ void Rover::set_reverse(bool reverse) { if (in_reverse == reverse) { return; } g.pidSpeedThrottle.reset_I(); in_reverse = reverse; } void Rover::set_mode(enum mode mode) { if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } // If we are changing out of AUTO mode reset the loiter timer if (control_mode == AUTO) loiter_time = 0; control_mode = mode; throttle_last = 0; throttle = 500; set_reverse(false); g.pidSpeedThrottle.reset_I(); if (control_mode != AUTO) { auto_triggered = false; } switch(control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: break; case AUTO: rtl_complete = false; restart_nav(); break; case RTL: do_RTL(); break; case GUIDED: rtl_complete = false; /* when entering guided mode we set the target as the current location. This matches the behaviour of the copter code. */ guided_WP = current_loc; set_guided_WP(); break; default: do_RTL(); break; } if (should_log(MASK_LOG_MODE)) { DataFlash.Log_Write_Mode(control_mode); } } /* set_mode() wrapper for MAVLink SET_MODE */ bool Rover::mavlink_set_mode(uint8_t mode) { switch (mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: case GUIDED: case AUTO: case RTL: set_mode((enum mode)mode); return true; } return false; } /* called to set/unset a failsafe event. */ void Rover::failsafe_trigger(uint8_t failsafe_type, bool on) { uint8_t old_bits = failsafe.bits; if (on) { failsafe.bits |= failsafe_type; } else { failsafe.bits &= ~failsafe_type; } if (old_bits == 0 && failsafe.bits != 0) { // a failsafe event has started failsafe.start_time = millis(); } if (failsafe.triggered != 0 && failsafe.bits == 0) { // a failsafe event has ended gcs_send_text_fmt(PSTR("Failsafe ended")); } failsafe.triggered &= failsafe.bits; if (failsafe.triggered == 0 && failsafe.bits != 0 && millis() - failsafe.start_time > g.fs_timeout*1000 && control_mode != RTL && control_mode != HOLD) { failsafe.triggered = failsafe.bits; gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered); switch (g.fs_action) { case 0: break; case 1: set_mode(RTL); break; case 2: set_mode(HOLD); break; } } } void Rover::startup_INS_ground(void) { gcs_send_text_P(MAV_SEVERITY_ALERT, PSTR("Warming up ADC...")); mavlink_delay(500); // Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! // ----------------------- gcs_send_text_P(MAV_SEVERITY_ALERT, PSTR("Beginning INS calibration; do not move vehicle")); mavlink_delay(1000); ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); AP_InertialSensor::Start_style style; if (g.skip_gyro_cal) { style = AP_InertialSensor::WARM_START; } else { style = AP_InertialSensor::COLD_START; } ins.init(style, ins_sample_rate); ahrs.reset(); } // updates the notify state // should be called at 50hz void Rover::update_notify() { notify.update(); } void Rover::resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; perf_mon_timer = millis(); } void Rover::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL1_BAUD. if (usb_connected) { serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0); } else { serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0); } #endif } void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print_P(PSTR("Manual")); break; case HOLD: port->print_P(PSTR("HOLD")); break; case LEARNING: port->print_P(PSTR("Learning")); break; case STEERING: port->print_P(PSTR("Steering")); break; case AUTO: port->print_P(PSTR("AUTO")); break; case RTL: port->print_P(PSTR("RTL")); break; default: port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); break; } } /* check a digitial pin for high,low (1/0) */ uint8_t Rover::check_digital_pin(uint8_t pin) { int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); if (dpin == -1) { return 0; } // ensure we are in input mode hal.gpio->pinMode(dpin, HAL_GPIO_INPUT); // enable pullup hal.gpio->write(dpin, 1); return hal.gpio->read(dpin); } /* should we log a message type now? */ bool Rover::should_log(uint32_t mask) { if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0; if (ret && !DataFlash.logging_started() && !in_log_download) { start_logging(); } return ret; } /* send FrSky telemetry. Should be called at 5Hz by scheduler */ #if FRSKY_TELEM_ENABLED == ENABLED void Rover::frsky_telemetry_send(void) { frsky_telemetry.send_frames((uint8_t)control_mode); } #endif