#include "Copter.h"
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* ArduCopter parameter definitions
*
*/
#define GSCALAR(v, name, def) { copter.g.v.vtype, name, Parameters::k_param_ ## v, &copter.g.v, {def_value : def} }
#define ASCALAR(v, name, def) { copter.aparm.v.vtype, name, Parameters::k_param_ ## v, (const void *)&copter.aparm.v, {def_value : def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &copter.g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, (const void *)&copter.v, {group_info : class::var_info} }
#define GOBJECTPTR(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, (const void *)&copter.v, {group_info : class::var_info}, AP_PARAM_FLAG_POINTER }
#define GOBJECTVARPTR(v, name, var_info_ptr) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, (const void *)&copter.v, {group_info_ptr : var_info_ptr}, AP_PARAM_FLAG_POINTER | AP_PARAM_FLAG_INFO_POINTER }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, (const void *)&copter.v, {group_info : class::var_info} }
const AP_Param::Info Copter::var_info[] = {
// @Param: SYSID_SW_MREV
// @DisplayName: Eeprom format version number
// @Description: This value is incremented when changes are made to the eeprom format
// @User: Advanced
// @ReadOnly: True
GSCALAR(format_version, "SYSID_SW_MREV", 0),
// @Param: SYSID_THISMAV
// @DisplayName: MAVLink system ID of this vehicle
// @Description: Allows setting an individual MAVLink system id for this vehicle to distinguish it from others on the same network
// @Range: 1 255
// @User: Advanced
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
// @Param: SYSID_MYGCS
// @DisplayName: My ground station number
// @Description: Allows restricting radio overrides to only come from my ground station
// @Values: 255:Mission Planner and DroidPlanner, 252: AP Planner 2
// @User: Advanced
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
// @Param: PILOT_THR_FILT
// @DisplayName: Throttle filter cutoff
// @Description: Throttle filter cutoff (Hz) - active whenever altitude control is inactive - 0 to disable
// @User: Advanced
// @Units: Hz
// @Range: 0 10
// @Increment: .5
GSCALAR(throttle_filt, "PILOT_THR_FILT", 0),
// @Param: PILOT_TKOFF_ALT
// @DisplayName: Pilot takeoff altitude
// @Description: Altitude that altitude control modes will climb to when a takeoff is triggered with the throttle stick.
// @User: Standard
// @Units: cm
// @Range: 0.0 1000.0
// @Increment: 10
GSCALAR(pilot_takeoff_alt, "PILOT_TKOFF_ALT", PILOT_TKOFF_ALT_DEFAULT),
// @Param: PILOT_TKOFF_DZ
// @DisplayName: Takeoff trigger deadzone
// @Description: Offset from mid stick at which takeoff is triggered
// @User: Standard
// @Range: 0 500
// @Increment: 10
GSCALAR(takeoff_trigger_dz, "PILOT_TKOFF_DZ", THR_DZ_DEFAULT),
// @Param: PILOT_THR_BHV
// @DisplayName: Throttle stick behavior
// @Description: Bitmask containing various throttle stick options. TX with sprung throttle can set PILOT_THR_BHV to "1" so motor feedback when landed starts from mid-stick instead of bottom of stick.
// @User: Standard
// @Values: 0:None,1:Feedback from mid stick,2:High throttle cancels landing,4:Disarm on land detection
// @Bitmask: 0:Feedback from mid stick,1:High throttle cancels landing,2:Disarm on land detection
GSCALAR(throttle_behavior, "PILOT_THR_BHV", 0),
// @Group: SERIAL
// @Path: ../libraries/AP_SerialManager/AP_SerialManager.cpp
GOBJECT(serial_manager, "SERIAL", AP_SerialManager),
// @Param: TELEM_DELAY
// @DisplayName: Telemetry startup delay
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Advanced
// @Units: s
// @Range: 0 30
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
// @Param: GCS_PID_MASK
// @DisplayName: GCS PID tuning mask
// @Description: bitmask of PIDs to send MAVLink PID_TUNING messages for
// @User: Advanced
// @Values: 0:None,1:Roll,2:Pitch,4:Yaw
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
GSCALAR(gcs_pid_mask, "GCS_PID_MASK", 0),
#if MODE_RTL_ENABLED == ENABLED
// @Param: RTL_ALT
// @DisplayName: RTL Altitude
// @Description: The minimum alt above home the vehicle will climb to before returning. If the vehicle is flying higher than this value it will return at its current altitude.
// @Units: cm
// @Range: 200 8000
// @Increment: 1
// @User: Standard
GSCALAR(rtl_altitude, "RTL_ALT", RTL_ALT),
// @Param: RTL_CONE_SLOPE
// @DisplayName: RTL cone slope
// @Description: Defines a cone above home which determines maximum climb
// @Range: 0.5 10.0
// @Increment: .1
// @Values: 0:Disabled,1:Shallow,3:Steep
// @User: Standard
GSCALAR(rtl_cone_slope, "RTL_CONE_SLOPE", RTL_CONE_SLOPE_DEFAULT),
// @Param: RTL_SPEED
// @DisplayName: RTL speed
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally while flying home. If this is set to zero, WPNAV_SPEED will be used instead.
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
GSCALAR(rtl_speed_cms, "RTL_SPEED", 0),
// @Param: RTL_ALT_FINAL
// @DisplayName: RTL Final Altitude
// @Description: This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land.
// @Units: cm
// @Range: -1 1000
// @Increment: 1
// @User: Standard
GSCALAR(rtl_alt_final, "RTL_ALT_FINAL", RTL_ALT_FINAL),
// @Param: RTL_CLIMB_MIN
// @DisplayName: RTL minimum climb
// @Description: The vehicle will climb this many cm during the initial climb portion of the RTL
// @Units: cm
// @Range: 0 3000
// @Increment: 10
// @User: Standard
GSCALAR(rtl_climb_min, "RTL_CLIMB_MIN", RTL_CLIMB_MIN_DEFAULT),
// @Param: RTL_LOIT_TIME
// @DisplayName: RTL loiter time
// @Description: Time (in milliseconds) to loiter above home before beginning final descent
// @Units: ms
// @Range: 0 60000
// @Increment: 1000
// @User: Standard
GSCALAR(rtl_loiter_time, "RTL_LOIT_TIME", RTL_LOITER_TIME),
#endif
#if RANGEFINDER_ENABLED == ENABLED
// @Param: RNGFND_GAIN
// @DisplayName: Rangefinder gain
// @Description: Used to adjust the speed with which the target altitude is changed when objects are sensed below the copter
// @Range: 0.01 2.0
// @Increment: 0.01
// @User: Standard
GSCALAR(rangefinder_gain, "RNGFND_GAIN", RANGEFINDER_GAIN_DEFAULT),
#endif
// @Param: FS_GCS_ENABLE
// @DisplayName: Ground Station Failsafe Enable
// @Description: Controls whether failsafe will be invoked (and what action to take) when connection with Ground station is lost for at least 5 seconds. NB. The GCS Failsafe is only active when RC_OVERRIDE is being used to control the vehicle.
// @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode,3:Enabled always SmartRTL or RTL,4:Enabled always SmartRTL or Land
// @User: Standard
GSCALAR(failsafe_gcs, "FS_GCS_ENABLE", FS_GCS_ENABLED_ALWAYS_RTL),
// @Param: GPS_HDOP_GOOD
// @DisplayName: GPS Hdop Good
// @Description: GPS Hdop value at or below this value represent a good position. Used for pre-arm checks
// @Range: 100 900
// @User: Advanced
GSCALAR(gps_hdop_good, "GPS_HDOP_GOOD", GPS_HDOP_GOOD_DEFAULT),
// @Param: MAG_ENABLE
// @DisplayName: Compass enable/disable
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
// @Param: SUPER_SIMPLE
// @DisplayName: Super Simple Mode
// @Description: Bitmask to enable Super Simple mode for some flight modes. Setting this to Disabled(0) will disable Super Simple Mode
// @Values: 0:Disabled,1:Mode1,2:Mode2,3:Mode1+2,4:Mode3,5:Mode1+3,6:Mode2+3,7:Mode1+2+3,8:Mode4,9:Mode1+4,10:Mode2+4,11:Mode1+2+4,12:Mode3+4,13:Mode1+3+4,14:Mode2+3+4,15:Mode1+2+3+4,16:Mode5,17:Mode1+5,18:Mode2+5,19:Mode1+2+5,20:Mode3+5,21:Mode1+3+5,22:Mode2+3+5,23:Mode1+2+3+5,24:Mode4+5,25:Mode1+4+5,26:Mode2+4+5,27:Mode1+2+4+5,28:Mode3+4+5,29:Mode1+3+4+5,30:Mode2+3+4+5,31:Mode1+2+3+4+5,32:Mode6,33:Mode1+6,34:Mode2+6,35:Mode1+2+6,36:Mode3+6,37:Mode1+3+6,38:Mode2+3+6,39:Mode1+2+3+6,40:Mode4+6,41:Mode1+4+6,42:Mode2+4+6,43:Mode1+2+4+6,44:Mode3+4+6,45:Mode1+3+4+6,46:Mode2+3+4+6,47:Mode1+2+3+4+6,48:Mode5+6,49:Mode1+5+6,50:Mode2+5+6,51:Mode1+2+5+6,52:Mode3+5+6,53:Mode1+3+5+6,54:Mode2+3+5+6,55:Mode1+2+3+5+6,56:Mode4+5+6,57:Mode1+4+5+6,58:Mode2+4+5+6,59:Mode1+2+4+5+6,60:Mode3+4+5+6,61:Mode1+3+4+5+6,62:Mode2+3+4+5+6,63:Mode1+2+3+4+5+6
// @User: Standard
GSCALAR(super_simple, "SUPER_SIMPLE", 0),
// @Param: WP_YAW_BEHAVIOR
// @DisplayName: Yaw behaviour during missions
// @Description: Determines how the autopilot controls the yaw during missions and RTL
// @Values: 0:Never change yaw, 1:Face next waypoint, 2:Face next waypoint except RTL, 3:Face along GPS course
// @User: Standard
GSCALAR(wp_yaw_behavior, "WP_YAW_BEHAVIOR", WP_YAW_BEHAVIOR_DEFAULT),
// @Param: LAND_SPEED
// @DisplayName: Land speed
// @Description: The descent speed for the final stage of landing in cm/s
// @Units: cm/s
// @Range: 30 200
// @Increment: 10
// @User: Standard
GSCALAR(land_speed, "LAND_SPEED", LAND_SPEED),
// @Param: LAND_SPEED_HIGH
// @DisplayName: Land speed high
// @Description: The descent speed for the first stage of landing in cm/s. If this is zero then WPNAV_SPEED_DN is used
// @Units: cm/s
// @Range: 0 500
// @Increment: 10
// @User: Standard
GSCALAR(land_speed_high, "LAND_SPEED_HIGH", 0),
// @Param: PILOT_SPEED_UP
// @DisplayName: Pilot maximum vertical speed ascending
// @Description: The maximum vertical ascending velocity the pilot may request in cm/s
// @Units: cm/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
GSCALAR(pilot_speed_up, "PILOT_SPEED_UP", PILOT_VELZ_MAX),
// @Param: PILOT_ACCEL_Z
// @DisplayName: Pilot vertical acceleration
// @Description: The vertical acceleration used when pilot is controlling the altitude
// @Units: cm/s/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
GSCALAR(pilot_accel_z, "PILOT_ACCEL_Z", PILOT_ACCEL_Z_DEFAULT),
// @Param: FS_THR_ENABLE
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel
// @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode,3:Enabled always Land,4:Enabled always SmartRTL or RTL,5:Enabled always SmartRTL or Land
// @User: Standard
GSCALAR(failsafe_throttle, "FS_THR_ENABLE", FS_THR_ENABLED_ALWAYS_RTL),
// @Param: FS_THR_VALUE
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level in microseconds on channel 3 below which throttle failsafe triggers
// @Range: 925 1100
// @Units: PWM
// @Increment: 1
// @User: Standard
GSCALAR(failsafe_throttle_value, "FS_THR_VALUE", FS_THR_VALUE_DEFAULT),
// @Param: THR_DZ
// @DisplayName: Throttle deadzone
// @Description: The deadzone above and below mid throttle in PWM microseconds. Used in AltHold, Loiter, PosHold flight modes
// @User: Standard
// @Range: 0 300
// @Units: PWM
// @Increment: 1
GSCALAR(throttle_deadzone, "THR_DZ", THR_DZ_DEFAULT),
// @Param: FLTMODE1
// @DisplayName: Flight Mode 1
// @Description: Flight mode when Channel 5 pwm is <= 1230
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1),
// @Param: FLTMODE2
// @DisplayName: Flight Mode 2
// @Description: Flight mode when Channel 5 pwm is >1230, <= 1360
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2),
// @Param: FLTMODE3
// @DisplayName: Flight Mode 3
// @Description: Flight mode when Channel 5 pwm is >1360, <= 1490
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3),
// @Param: FLTMODE4
// @DisplayName: Flight Mode 4
// @Description: Flight mode when Channel 5 pwm is >1490, <= 1620
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4),
// @Param: FLTMODE5
// @DisplayName: Flight Mode 5
// @Description: Flight mode when Channel 5 pwm is >1620, <= 1749
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5),
// @Param: FLTMODE6
// @DisplayName: Flight Mode 6
// @Description: Flight mode when Channel 5 pwm is >=1750
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,9:Land,11:Drift,13:Sport,14:Flip,15:AutoTune,16:PosHold,17:Brake,18:Throw,19:Avoid_ADSB,20:Guided_NoGPS,21:Smart_RTL,22:FlowHold,23:Follow
// @User: Standard
GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6),
// @Param: FLTMODE_CH
// @DisplayName: Flightmode channel
// @Description: RC Channel to use for flight mode control
// @Values: 0:Disabled,5:Channel5,6:Channel6,7:Channel7,8:Channel8
// @User: Advanced
GSCALAR(flight_mode_chan, "FLTMODE_CH", CH_MODE_DEFAULT),
// @Param: SIMPLE
// @DisplayName: Simple mode bitmask
// @Description: Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode)
// @User: Advanced
GSCALAR(simple_modes, "SIMPLE", 0),
// @Param: LOG_BITMASK
// @DisplayName: Log bitmask
// @Description: 4 byte bitmap of log types to enable
// @Values: 830:Default,894:Default+RCIN,958:Default+IMU,1854:Default+Motors,-6146:NearlyAll-AC315,45054:NearlyAll,131071:All+FastATT,262142:All+MotBatt,393214:All+FastIMU,397310:All+FastIMU+PID,655358:All+FullIMU,0:Disabled
// @Bitmask: 0:ATTITUDE_FAST,1:ATTITUDE_MED,2:GPS,3:PM,4:CTUN,5:NTUN,6:RCIN,7:IMU,8:CMD,9:CURRENT,10:RCOUT,11:OPTFLOW,12:PID,13:COMPASS,14:INAV,15:CAMERA,17:MOTBATT,18:IMU_FAST,19:IMU_RAW
// @User: Standard
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
// @Param: ESC_CALIBRATION
// @DisplayName: ESC Calibration
// @Description: Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually.
// @User: Advanced
// @Values: 0:Normal Start-up, 1:Start-up in ESC Calibration mode if throttle high, 2:Start-up in ESC Calibration mode regardless of throttle, 3:Start-up and automatically calibrate ESCs, 9:Disabled
GSCALAR(esc_calibrate, "ESC_CALIBRATION", 0),
// @Param: TUNE
// @DisplayName: Channel 6 Tuning
// @Description: Controls which parameters (normally PID gains) are being tuned with transmitter's channel 6 knob
// @User: Standard
// @Values: 0:None,1:Stab Roll/Pitch kP,4:Rate Roll/Pitch kP,5:Rate Roll/Pitch kI,21:Rate Roll/Pitch kD,3:Stab Yaw kP,6:Rate Yaw kP,26:Rate Yaw kD,56:Rate Yaw Filter,55:Motor Yaw Headroom,14:AltHold kP,7:Throttle Rate kP,34:Throttle Accel kP,35:Throttle Accel kI,36:Throttle Accel kD,12:Loiter Pos kP,22:Velocity XY kP,28:Velocity XY kI,10:WP Speed,25:Acro RollPitch kP,40:Acro Yaw kP,45:RC Feel,13:Heli Ext Gyro,38:Declination,39:Circle Rate,41:RangeFinder Gain,46:Rate Pitch kP,47:Rate Pitch kI,48:Rate Pitch kD,49:Rate Roll kP,50:Rate Roll kI,51:Rate Roll kD,52:Rate Pitch FF,53:Rate Roll FF,54:Rate Yaw FF,57:Winch
GSCALAR(radio_tuning, "TUNE", 0),
// @Param: TUNE_LOW
// @DisplayName: Tuning minimum
// @Description: The minimum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
GSCALAR(radio_tuning_low, "TUNE_LOW", 0),
// @Param: TUNE_HIGH
// @DisplayName: Tuning maximum
// @Description: The maximum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
GSCALAR(radio_tuning_high, "TUNE_HIGH", 1000),
// @Param: FRAME_TYPE
// @DisplayName: Frame Type (+, X, V, etc)
// @Description: Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters.
// @Values: 0:Plus, 1:X, 2:V, 3:H, 4:V-Tail, 5:A-Tail, 10:Y6B
// @User: Standard
// @RebootRequired: True
GSCALAR(frame_type, "FRAME_TYPE", AP_Motors::MOTOR_FRAME_TYPE_X),
// @Group: ARMING_
// @Path: ../libraries/AP_Arming/AP_Arming.cpp
GOBJECT(arming, "ARMING_", AP_Arming_Copter),
// @Param: DISARM_DELAY
// @DisplayName: Disarm delay
// @Description: Delay before automatic disarm in seconds. A value of zero disables auto disarm.
// @Units: s
// @Range: 0 127
// @User: Advanced
GSCALAR(disarm_delay, "DISARM_DELAY", AUTO_DISARMING_DELAY),
// @Param: ANGLE_MAX
// @DisplayName: Angle Max
// @Description: Maximum lean angle in all flight modes
// @Units: cdeg
// @Range: 1000 8000
// @User: Advanced
ASCALAR(angle_max, "ANGLE_MAX", DEFAULT_ANGLE_MAX),
// @Param: PHLD_BRAKE_RATE
// @DisplayName: PosHold braking rate
// @Description: PosHold flight mode's rotation rate during braking in deg/sec
// @Units: deg/s
// @Range: 4 12
// @User: Advanced
GSCALAR(poshold_brake_rate, "PHLD_BRAKE_RATE", POSHOLD_BRAKE_RATE_DEFAULT),
// @Param: PHLD_BRAKE_ANGLE
// @DisplayName: PosHold braking angle max
// @Description: PosHold flight mode's max lean angle during braking in centi-degrees
// @Units: cdeg
// @Range: 2000 4500
// @User: Advanced
GSCALAR(poshold_brake_angle_max, "PHLD_BRAKE_ANGLE", POSHOLD_BRAKE_ANGLE_DEFAULT),
// @Param: LAND_REPOSITION
// @DisplayName: Land repositioning
// @Description: Enables user input during LAND mode, the landing phase of RTL, and auto mode landings.
// @Values: 0:No repositioning, 1:Repositioning
// @User: Advanced
GSCALAR(land_repositioning, "LAND_REPOSITION", LAND_REPOSITION_DEFAULT),
// @Param: FS_EKF_ACTION
// @DisplayName: EKF Failsafe Action
// @Description: Controls the action that will be taken when an EKF failsafe is invoked
// @Values: 1:Land, 2:AltHold, 3:Land even in Stabilize
// @User: Advanced
GSCALAR(fs_ekf_action, "FS_EKF_ACTION", FS_EKF_ACTION_DEFAULT),
// @Param: FS_EKF_THRESH
// @DisplayName: EKF failsafe variance threshold
// @Description: Allows setting the maximum acceptable compass and velocity variance
// @Values: 0.6:Strict, 0.8:Default, 1.0:Relaxed
// @User: Advanced
GSCALAR(fs_ekf_thresh, "FS_EKF_THRESH", FS_EKF_THRESHOLD_DEFAULT),
// @Param: FS_CRASH_CHECK
// @DisplayName: Crash check enable
// @Description: This enables automatic crash checking. When enabled the motors will disarm if a crash is detected.
// @Values: 0:Disabled, 1:Enabled
// @User: Advanced
GSCALAR(fs_crash_check, "FS_CRASH_CHECK", 1),
// @Param: RC_SPEED
// @DisplayName: ESC Update Speed
// @Description: This is the speed in Hertz that your ESCs will receive updates
// @Units: Hz
// @Range: 50 490
// @Increment: 1
// @User: Advanced
GSCALAR(rc_speed, "RC_SPEED", RC_FAST_SPEED),
// @Param: ACRO_RP_P
// @DisplayName: Acro Roll and Pitch P gain
// @Description: Converts pilot roll and pitch into a desired rate of rotation in ACRO and SPORT mode. Higher values mean faster rate of rotation.
// @Range: 1 10
// @User: Standard
GSCALAR(acro_rp_p, "ACRO_RP_P", ACRO_RP_P),
// @Param: ACRO_YAW_P
// @DisplayName: Acro Yaw P gain
// @Description: Converts pilot yaw input into a desired rate of rotation in ACRO, Stabilize and SPORT modes. Higher values mean faster rate of rotation.
// @Range: 1 10
// @User: Standard
GSCALAR(acro_yaw_p, "ACRO_YAW_P", ACRO_YAW_P),
#if MODE_ACRO_ENABLED == ENABLED || MODE_SPORT_ENABLED == ENABLED
// @Param: ACRO_BAL_ROLL
// @DisplayName: Acro Balance Roll
// @Description: rate at which roll angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster.
// @Range: 0 3
// @Increment: 0.1
// @User: Advanced
GSCALAR(acro_balance_roll, "ACRO_BAL_ROLL", ACRO_BALANCE_ROLL),
// @Param: ACRO_BAL_PITCH
// @DisplayName: Acro Balance Pitch
// @Description: rate at which pitch angle returns to level in acro and sport mode. A higher value causes the vehicle to return to level faster.
// @Range: 0 3
// @Increment: 0.1
// @User: Advanced
GSCALAR(acro_balance_pitch, "ACRO_BAL_PITCH", ACRO_BALANCE_PITCH),
#endif
#if MODE_ACRO_ENABLED == ENABLED
// @Param: ACRO_TRAINER
// @DisplayName: Acro Trainer
// @Description: Type of trainer used in acro mode
// @Values: 0:Disabled,1:Leveling,2:Leveling and Limited
// @User: Advanced
GSCALAR(acro_trainer, "ACRO_TRAINER", ACRO_TRAINER_LIMITED),
// @Param: ACRO_RP_EXPO
// @DisplayName: Acro Roll/Pitch Expo
// @Description: Acro roll/pitch Expo to allow faster rotation when stick at edges
// @Values: 0:Disabled,0.1:Very Low,0.2:Low,0.3:Medium,0.4:High,0.5:Very High
// @Range: -0.5 1.0
// @User: Advanced
GSCALAR(acro_rp_expo, "ACRO_RP_EXPO", ACRO_RP_EXPO_DEFAULT),
#endif
// variables not in the g class which contain EEPROM saved variables
#if CAMERA == ENABLED
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
#endif
// @Group: RELAY_
// @Path: ../libraries/AP_Relay/AP_Relay.cpp
GOBJECT(relay, "RELAY_", AP_Relay),
#if PARACHUTE == ENABLED
// @Group: CHUTE_
// @Path: ../libraries/AP_Parachute/AP_Parachute.cpp
GOBJECT(parachute, "CHUTE_", AP_Parachute),
#endif
// @Group: LGR_
// @Path: ../libraries/AP_LandingGear/AP_LandingGear.cpp
GOBJECT(landinggear, "LGR_", AP_LandingGear),
#if FRAME_CONFIG == HELI_FRAME
// @Group: IM_
// @Path: ../libraries/AC_InputManager/AC_InputManager_Heli.cpp
GOBJECT(input_manager, "IM_", AC_InputManager_Heli),
#endif
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/AP_Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
// @Group: WPNAV_
// @Path: ../libraries/AC_WPNav/AC_WPNav.cpp
GOBJECTPTR(wp_nav, "WPNAV_", AC_WPNav),
// @Group: LOIT_
// @Path: ../libraries/AC_WPNav/AC_Loiter.cpp
GOBJECTPTR(loiter_nav, "LOIT_", AC_Loiter),
#if MODE_CIRCLE_ENABLED == ENABLED
// @Group: CIRCLE_
// @Path: ../libraries/AC_WPNav/AC_Circle.cpp
GOBJECTPTR(circle_nav, "CIRCLE_", AC_Circle),
#endif
// @Group: ATC_
// @Path: ../libraries/AC_AttitudeControl/AC_AttitudeControl.cpp,../libraries/AC_AttitudeControl/AC_AttitudeControl_Multi.cpp,../libraries/AC_AttitudeControl/AC_AttitudeControl_Heli.cpp
#if FRAME_CONFIG == HELI_FRAME
GOBJECTPTR(attitude_control, "ATC_", AC_AttitudeControl_Heli),
#else
GOBJECTPTR(attitude_control, "ATC_", AC_AttitudeControl_Multi),
#endif
// @Group: PSC
// @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp
GOBJECTPTR(pos_control, "PSC", AC_PosControl),
// @Group: SR0_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[0], gcs0, "SR0_", GCS_MAVLINK),
// @Group: SR1_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[1], gcs1, "SR1_", GCS_MAVLINK),
// @Group: SR2_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[2], gcs2, "SR2_", GCS_MAVLINK),
// @Group: SR3_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[3], gcs3, "SR3_", GCS_MAVLINK),
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
#if MOUNT == ENABLED
// @Group: MNT
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT", AP_Mount),
#endif
// @Group: LOG
// @Path: ../libraries/DataFlash/DataFlash.cpp
GOBJECT(DataFlash, "LOG", DataFlash_Class),
// @Group: BATT
// @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp
GOBJECT(battery, "BATT", AP_BattMonitor),
// @Group: BRD_
// @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp
GOBJECT(BoardConfig, "BRD_", AP_BoardConfig),
#if HAL_WITH_UAVCAN
// @Group: CAN_
// @Path: ../libraries/AP_BoardConfig/AP_BoardConfig_CAN.cpp
GOBJECT(BoardConfig_CAN, "CAN_", AP_BoardConfig_CAN),
#endif
#if SPRAYER_ENABLED == ENABLED
// @Group: SPRAY_
// @Path: ../libraries/AC_Sprayer/AC_Sprayer.cpp
GOBJECT(sprayer, "SPRAY_", AC_Sprayer),
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
GOBJECT(sitl, "SIM_", SITL::SITL),
#endif
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
GOBJECT(barometer, "GND_", AP_Baro),
// GPS driver
// @Group: GPS_
// @Path: ../libraries/AP_GPS/AP_GPS.cpp
GOBJECT(gps, "GPS_", AP_GPS),
// @Group: SCHED_
// @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
#if AC_FENCE == ENABLED
// @Group: FENCE_
// @Path: ../libraries/AC_Fence/AC_Fence.cpp
GOBJECT(fence, "FENCE_", AC_Fence),
#endif
// @Group: AVOID_
// @Path: ../libraries/AC_Avoidance/AC_Avoid.cpp
#if AC_AVOID_ENABLED == ENABLED
GOBJECT(avoid, "AVOID_", AC_Avoid),
#endif
#if AC_RALLY == ENABLED
// @Group: RALLY_
// @Path: AP_Rally.cpp,../libraries/AP_Rally/AP_Rally.cpp
GOBJECT(rally, "RALLY_", AP_Rally_Copter),
#endif
#if FRAME_CONFIG == HELI_FRAME
// @Group: H_
// @Path: ../libraries/AP_Motors/AP_MotorsHeli_Single.cpp,../libraries/AP_Motors/AP_MotorsHeli_Dual.cpp,../libraries/AP_Motors/AP_MotorsHeli.cpp
GOBJECTVARPTR(motors, "H_", &copter.motors_var_info),
#else
// @Group: MOT_
// @Path: ../libraries/AP_Motors/AP_MotorsMulticopter.cpp
GOBJECTVARPTR(motors, "MOT_", &copter.motors_var_info),
#endif
// @Group: RCMAP_
// @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp
GOBJECT(rcmap, "RCMAP_", RCMapper),
// @Group: EK2_
// @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp
GOBJECTN(EKF2, NavEKF2, "EK2_", NavEKF2),
// @Group: EK3_
// @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp
GOBJECTN(EKF3, NavEKF3, "EK3_", NavEKF3),
#if MODE_AUTO_ENABLED == ENABLED
// @Group: MIS_
// @Path: ../libraries/AP_Mission/AP_Mission.cpp
GOBJECT(mission, "MIS_", AP_Mission),
#endif
// @Group: RSSI_
// @Path: ../libraries/AP_RSSI/AP_RSSI.cpp
GOBJECT(rssi, "RSSI_", AP_RSSI),
#if RANGEFINDER_ENABLED == ENABLED
// @Group: RNGFND
// @Path: ../libraries/AP_RangeFinder/RangeFinder.cpp
GOBJECT(rangefinder, "RNGFND", RangeFinder),
#endif
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
// @Group: TERRAIN_
// @Path: ../libraries/AP_Terrain/AP_Terrain.cpp
GOBJECT(terrain, "TERRAIN_", AP_Terrain),
#endif
#if OPTFLOW == ENABLED
// @Group: FLOW
// @Path: ../libraries/AP_OpticalFlow/OpticalFlow.cpp
GOBJECT(optflow, "FLOW", OpticalFlow),
#endif
#if PRECISION_LANDING == ENABLED
// @Group: PLND_
// @Path: ../libraries/AC_PrecLand/AC_PrecLand.cpp
GOBJECT(precland, "PLND_", AC_PrecLand),
#endif
#if RPM_ENABLED == ENABLED
// @Group: RPM
// @Path: ../libraries/AP_RPM/AP_RPM.cpp
GOBJECT(rpm_sensor, "RPM", AP_RPM),
#endif
#if ADSB_ENABLED == ENABLED
// @Group: ADSB_
// @Path: ../libraries/AP_ADSB/AP_ADSB.cpp
GOBJECT(adsb, "ADSB_", AP_ADSB),
// @Group: AVD_
// @Path: ../libraries/AP_Avoidance/AP_Avoidance.cpp
GOBJECT(avoidance_adsb, "AVD_", AP_Avoidance_Copter),
#endif
#if AUTOTUNE_ENABLED == ENABLED
// @Param: AUTOTUNE_AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Values: 7:All,1:Roll Only,2:Pitch Only,4:Yaw Only,3:Roll and Pitch,5:Roll and Yaw,6:Pitch and Yaw
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
GSCALAR(autotune_axis_bitmask, "AUTOTUNE_AXES", 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT
// @Param: AUTOTUNE_AGGR
// @DisplayName: Autotune aggressiveness
// @Description: Autotune aggressiveness. Defines the bounce back used to detect size of the D term.
// @Range: 0.05 0.10
// @User: Standard
GSCALAR(autotune_aggressiveness, "AUTOTUNE_AGGR", 0.1f),
// @Param: AUTOTUNE_MIN_D
// @DisplayName: AutoTune minimum D
// @Description: Defines the minimum D gain
// @Range: 0.001 0.006
// @User: Standard
GSCALAR(autotune_min_d, "AUTOTUNE_MIN_D", 0.001f),
#endif
// @Group: NTF_
// @Path: ../libraries/AP_Notify/AP_Notify.cpp
GOBJECT(notify, "NTF_", AP_Notify),
#if MODE_THROW_ENABLED == ENABLED
// @Param: THROW_MOT_START
// @DisplayName: Start motors before throwing is detected
// @Description: Used by THROW mode. Controls whether motors will run at the speed set by THR_MIN or will be stopped when armed and waiting for the throw.
// @Values: 0:Stopped,1:Running
// @User: Standard
GSCALAR(throw_motor_start, "THROW_MOT_START", 0),
#endif
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
// @Param: TERRAIN_FOLLOW
// @DisplayName: Terrain Following use control
// @Description: This enables terrain following for RTL and LAND flight modes. To use this option TERRAIN_ENABLE must be 1 and the GCS must support sending terrain data to the aircraft. In RTL the RTL_ALT will be considered a height above the terrain. In LAND mode the vehicle will slow to LAND_SPEED 10m above terrain (instead of 10m above home). This parameter does not affect AUTO and Guided which use a per-command flag to determine if the height is above-home, absolute or above-terrain.
// @Values: 0:Do Not Use in RTL and Land,1:Use in RTL and Land
// @User: Standard
GSCALAR(terrain_follow, "TERRAIN_FOLLOW", 0),
#endif
#if OSD_ENABLED == ENABLED
// @Group: OSD
// @Path: ../libraries/AP_OSD/AP_OSD.cpp
GOBJECT(osd, "OSD", AP_OSD),
#endif
// @Group:
// @Path: Parameters.cpp
GOBJECT(g2, "", ParametersG2),
AP_VAREND
};
/*
2nd group of parameters
*/
const AP_Param::GroupInfo ParametersG2::var_info[] = {
// @Param: WP_NAVALT_MIN
// @DisplayName: Minimum navigation altitude
// @Description: This is the altitude in meters above which for navigation can begin. This applies in auto takeoff and auto landing.
// @Range: 0 5
// @User: Standard
AP_GROUPINFO("WP_NAVALT_MIN", 1, ParametersG2, wp_navalt_min, 0),
// @Group: BTN_
// @Path: ../libraries/AP_Button/AP_Button.cpp
AP_SUBGROUPINFO(button, "BTN_", 2, ParametersG2, AP_Button),
#if MODE_THROW_ENABLED == ENABLED
// @Param: THROW_NEXTMODE
// @DisplayName: Throw mode's follow up mode
// @Description: Vehicle will switch to this mode after the throw is successfully completed. Default is to stay in throw mode (18)
// @Values: 3:Auto,4:Guided,5:LOITER,6:RTL,9:Land,17:Brake,18:Throw
// @User: Standard
AP_GROUPINFO("THROW_NEXTMODE", 3, ParametersG2, throw_nextmode, 18),
// @Param: THROW_TYPE
// @DisplayName: Type of Type
// @Description: Used by THROW mode. Specifies whether Copter is thrown upward or dropped.
// @Values: 0:Upward Throw,1:Drop
// @User: Standard
AP_GROUPINFO("THROW_TYPE", 4, ParametersG2, throw_type, Copter::ModeThrow::ThrowType_Upward),
#endif
// @Param: GND_EFFECT_COMP
// @DisplayName: Ground Effect Compensation Enable/Disable
// @Description: Ground Effect Compensation Enable/Disable
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("GND_EFFECT_COMP", 5, ParametersG2, gndeffect_comp_enabled, 0),
#if ADVANCED_FAILSAFE == ENABLED
// @Group: AFS_
// @Path: ../libraries/AP_AdvancedFailsafe/AP_AdvancedFailsafe.cpp
AP_SUBGROUPINFO(afs, "AFS_", 6, ParametersG2, AP_AdvancedFailsafe),
#endif
// @Param: DEV_OPTIONS
// @DisplayName: Development options
// @Description: Bitmask of developer options. The meanings of the bit fields in this parameter may vary at any time. Developers should check the source code for current meaning
// @Bitmask: 0:ADSBMavlinkProcessing
// @User: Advanced
AP_GROUPINFO("DEV_OPTIONS", 7, ParametersG2, dev_options, 0),
#if BEACON_ENABLED == ENABLED
// @Group: BCN
// @Path: ../libraries/AP_Beacon/AP_Beacon.cpp
AP_SUBGROUPINFO(beacon, "BCN", 14, ParametersG2, AP_Beacon),
#endif
#if PROXIMITY_ENABLED == ENABLED
// @Group: PRX
// @Path: ../libraries/AP_Proximity/AP_Proximity.cpp
AP_SUBGROUPINFO(proximity, "PRX", 8, ParametersG2, AP_Proximity),
#endif
// @Param: ACRO_Y_EXPO
// @DisplayName: Acro Yaw Expo
// @Description: Acro yaw expo to allow faster rotation when stick at edges
// @Values: 0:Disabled,0.1:Very Low,0.2:Low,0.3:Medium,0.4:High,0.5:Very High
// @Range: -0.5 1.0
// @User: Advanced
AP_GROUPINFO("ACRO_Y_EXPO", 9, ParametersG2, acro_y_expo, ACRO_Y_EXPO_DEFAULT),
#if MODE_ACRO_ENABLED == ENABLED
// @Param: ACRO_THR_MID
// @DisplayName: Acro Thr Mid
// @Description: Acro Throttle Mid
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("ACRO_THR_MID", 10, ParametersG2, acro_thr_mid, ACRO_THR_MID_DEFAULT),
#endif
// @Param: SYSID_ENFORCE
// @DisplayName: GCS sysid enforcement
// @Description: This controls whether packets from other than the expected GCS system ID will be accepted
// @Values: 0:NotEnforced,1:Enforced
// @User: Advanced
AP_GROUPINFO("SYSID_ENFORCE", 11, ParametersG2, sysid_enforce, 0),
#if STATS_ENABLED == ENABLED
// @Group: STAT
// @Path: ../libraries/AP_Stats/AP_Stats.cpp
AP_SUBGROUPINFO(stats, "STAT", 12, ParametersG2, AP_Stats),
#endif
#if GRIPPER_ENABLED == ENABLED
// @Group: GRIP_
// @Path: ../libraries/AP_Gripper/AP_Gripper.cpp
AP_SUBGROUPINFO(gripper, "GRIP_", 13, ParametersG2, AP_Gripper),
#endif
// @Param: FRAME_CLASS
// @DisplayName: Frame Class
// @Description: Controls major frame class for multicopter component
// @Values: 0:Undefined, 1:Quad, 2:Hexa, 3:Octa, 4:OctaQuad, 5:Y6, 6:Heli, 7:Tri, 8:SingleCopter, 9:CoaxCopter, 11:Heli_Dual, 12:DodecaHexa, 13:HeliQuad
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("FRAME_CLASS", 15, ParametersG2, frame_class, 0),
// @Group: SERVO
// @Path: ../libraries/SRV_Channel/SRV_Channels.cpp
AP_SUBGROUPINFO(servo_channels, "SERVO", 16, ParametersG2, SRV_Channels),
// @Group: RC
// @Path: ../libraries/RC_Channel/RC_Channels.cpp
AP_SUBGROUPINFO(rc_channels, "RC", 17, ParametersG2, RC_Channels_Copter),
#if VISUAL_ODOMETRY_ENABLED == ENABLED
// @Group: VISO
// @Path: ../libraries/AP_VisualOdom/AP_VisualOdom.cpp
AP_SUBGROUPINFO(visual_odom, "VISO", 18, ParametersG2, AP_VisualOdom),
#endif
// @Group: TCAL
// @Path: ../libraries/AP_TempCalibration/AP_TempCalibration.cpp
AP_SUBGROUPINFO(temp_calibration, "TCAL", 19, ParametersG2, AP_TempCalibration),
#if TOY_MODE_ENABLED == ENABLED
// @Group: TMODE
// @Path: toy_mode.cpp
AP_SUBGROUPINFO(toy_mode, "TMODE", 20, ParametersG2, ToyMode),
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
// @Group: SRTL_
// @Path: ../libraries/AP_SmartRTL/AP_SmartRTL.cpp
AP_SUBGROUPINFO(smart_rtl, "SRTL_", 21, ParametersG2, AP_SmartRTL),
#endif
#if WINCH_ENABLED == ENABLED
// @Group: WENC
// @Path: ../libraries/AP_WheelEncoder/AP_WheelEncoder.cpp
AP_SUBGROUPINFO(wheel_encoder, "WENC", 22, ParametersG2, AP_WheelEncoder),
// @Group: WINCH_
// @Path: ../libraries/AP_Winch/AP_Winch.cpp
AP_SUBGROUPINFO(winch, "WINCH", 23, ParametersG2, AP_Winch),
#endif
// @Param: PILOT_SPEED_DN
// @DisplayName: Pilot maximum vertical speed descending
// @Description: The maximum vertical descending velocity the pilot may request in cm/s
// @Units: cm/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("PILOT_SPEED_DN", 24, ParametersG2, pilot_speed_dn, 0),
// @Param: LAND_ALT_LOW
// @DisplayName: Land alt low
// @Description: Altitude during Landing at which vehicle slows to LAND_SPEED
// @Units: cm
// @Range: 100 10000
// @Increment: 10
// @User: Advanced
AP_GROUPINFO("LAND_ALT_LOW", 25, ParametersG2, land_alt_low, 1000),
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
// @Group: FHLD
// @Path: mode_flowhold.cpp
AP_SUBGROUPPTR(mode_flowhold_ptr, "FHLD", 26, ParametersG2, Copter::ModeFlowHold),
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
// @Group: FOLL
// @Path: ../libraries/AP_Follow/AP_Follow.cpp
AP_SUBGROUPINFO(follow, "FOLL", 27, ParametersG2, AP_Follow),
#endif
AP_GROUPEND
};
/*
constructor for g2 object
*/
ParametersG2::ParametersG2(void)
: temp_calibration() // this doesn't actually need constructing, but removing it here is problematic syntax-wise
#if BEACON_ENABLED == ENABLED
, beacon(copter.serial_manager)
#endif
#if PROXIMITY_ENABLED == ENABLED
, proximity(copter.serial_manager)
#endif
#if ADVANCED_FAILSAFE == ENABLED
,afs(copter.mission, copter.gps)
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
,smart_rtl()
#endif
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
,mode_flowhold_ptr(&copter.mode_flowhold)
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
,follow()
#endif
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
This is a conversion table from old parameter values to new
parameter names. The startup code looks for saved values of the old
parameters and will copy them across to the new parameters if the
new parameter does not yet have a saved value. It then saves the new
value.
Note that this works even if the old parameter has been removed. It
relies on the old k_param index not being removed
The second column below is the index in the var_info[] table for the
old object. This should be zero for top level parameters.
*/
const AP_Param::ConversionInfo conversion_table[] = {
{ Parameters::k_param_battery_monitoring, 0, AP_PARAM_INT8, "BATT_MONITOR" },
{ Parameters::k_param_battery_volt_pin, 0, AP_PARAM_INT8, "BATT_VOLT_PIN" },
{ Parameters::k_param_battery_curr_pin, 0, AP_PARAM_INT8, "BATT_CURR_PIN" },
{ Parameters::k_param_volt_div_ratio, 0, AP_PARAM_FLOAT, "BATT_VOLT_MULT" },
{ Parameters::k_param_curr_amp_per_volt, 0, AP_PARAM_FLOAT, "BATT_AMP_PERVOLT" },
{ Parameters::k_param_pack_capacity, 0, AP_PARAM_INT32, "BATT_CAPACITY" },
{ Parameters::k_param_log_bitmask_old, 0, AP_PARAM_INT16, "LOG_BITMASK" },
{ Parameters::k_param_serial0_baud, 0, AP_PARAM_INT16, "SERIAL0_BAUD" },
{ Parameters::k_param_serial1_baud, 0, AP_PARAM_INT16, "SERIAL1_BAUD" },
{ Parameters::k_param_serial2_baud, 0, AP_PARAM_INT16, "SERIAL2_BAUD" },
{ Parameters::k_param_arming_check_old, 0, AP_PARAM_INT8, "ARMING_CHECK" },
// battery
{ Parameters::k_param_fs_batt_voltage, 0, AP_PARAM_INT8, "BATT_FS_LOW_VOLT" },
{ Parameters::k_param_fs_batt_mah, 0, AP_PARAM_INT8, "BATT_FS_LOW_MAH" },
{ Parameters::k_param_failsafe_battery_enabled,0, AP_PARAM_INT8, "BATT_FS_LOW_ACT" },
{ Parameters::Parameters::k_param_ch7_option_old, 0, AP_PARAM_INT8, "RC7_OPTION" },
{ Parameters::Parameters::k_param_ch8_option_old, 0, AP_PARAM_INT8, "RC8_OPTION" },
{ Parameters::Parameters::k_param_ch9_option_old, 0, AP_PARAM_INT8, "RC9_OPTION" },
{ Parameters::Parameters::k_param_ch10_option_old, 0, AP_PARAM_INT8, "RC10_OPTION" },
{ Parameters::Parameters::k_param_ch11_option_old, 0, AP_PARAM_INT8, "RC11_OPTION" },
{ Parameters::Parameters::k_param_ch12_option_old, 0, AP_PARAM_INT8, "RC12_OPTION" },
};
void Copter::load_parameters(void)
{
if (!AP_Param::check_var_info()) {
hal.console->printf("Bad var table\n");
AP_HAL::panic("Bad var table");
}
// disable centrifugal force correction, it will be enabled as part of the arming process
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
hal.console->printf("Firmware change: erasing EEPROM...\n");
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
hal.console->printf("done.\n");
}
uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
AP_Param::convert_old_parameters(&conversion_table[0], ARRAY_SIZE(conversion_table));
hal.console->printf("load_all took %uus\n", (unsigned)(micros() - before));
// setup AP_Param frame type flags
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_COPTER);
}
// handle conversion of PID gains from Copter-3.3 to Copter-3.4
void Copter::convert_pid_parameters(void)
{
// conversion info
const AP_Param::ConversionInfo pid_conversion_info[] = {
{ Parameters::k_param_pid_rate_roll, 0, AP_PARAM_FLOAT, "ATC_RAT_RLL_P" },
{ Parameters::k_param_pid_rate_roll, 1, AP_PARAM_FLOAT, "ATC_RAT_RLL_I" },
{ Parameters::k_param_pid_rate_roll, 2, AP_PARAM_FLOAT, "ATC_RAT_RLL_D" },
{ Parameters::k_param_pid_rate_pitch, 0, AP_PARAM_FLOAT, "ATC_RAT_PIT_P" },
{ Parameters::k_param_pid_rate_pitch, 1, AP_PARAM_FLOAT, "ATC_RAT_PIT_I" },
{ Parameters::k_param_pid_rate_pitch, 2, AP_PARAM_FLOAT, "ATC_RAT_PIT_D" },
{ Parameters::k_param_pid_rate_yaw, 0, AP_PARAM_FLOAT, "ATC_RAT_YAW_P" },
{ Parameters::k_param_pid_rate_yaw, 1, AP_PARAM_FLOAT, "ATC_RAT_YAW_I" },
{ Parameters::k_param_pid_rate_yaw, 2, AP_PARAM_FLOAT, "ATC_RAT_YAW_D" },
#if FRAME_CONFIG == HELI_FRAME
{ Parameters::k_param_pid_rate_roll, 4, AP_PARAM_FLOAT, "ATC_RAT_RLL_VFF" },
{ Parameters::k_param_pid_rate_pitch, 4, AP_PARAM_FLOAT, "ATC_RAT_PIT_VFF" },
{ Parameters::k_param_pid_rate_yaw , 4, AP_PARAM_FLOAT, "ATC_RAT_YAW_VFF" },
#endif
};
const AP_Param::ConversionInfo imax_conversion_info[] = {
{ Parameters::k_param_pid_rate_roll, 5, AP_PARAM_FLOAT, "ATC_RAT_RLL_IMAX" },
{ Parameters::k_param_pid_rate_pitch, 5, AP_PARAM_FLOAT, "ATC_RAT_PIT_IMAX" },
{ Parameters::k_param_pid_rate_yaw, 5, AP_PARAM_FLOAT, "ATC_RAT_YAW_IMAX" },
#if FRAME_CONFIG == HELI_FRAME
{ Parameters::k_param_pid_rate_roll, 7, AP_PARAM_FLOAT, "ATC_RAT_RLL_ILMI" },
{ Parameters::k_param_pid_rate_pitch, 7, AP_PARAM_FLOAT, "ATC_RAT_PIT_ILMI" },
{ Parameters::k_param_pid_rate_yaw, 7, AP_PARAM_FLOAT, "ATC_RAT_YAW_ILMI" },
#endif
};
const AP_Param::ConversionInfo angle_and_filt_conversion_info[] = {
{ Parameters::k_param_p_stabilize_roll, 0, AP_PARAM_FLOAT, "ATC_ANG_RLL_P" },
{ Parameters::k_param_p_stabilize_pitch, 0, AP_PARAM_FLOAT, "ATC_ANG_PIT_P" },
{ Parameters::k_param_p_stabilize_yaw, 0, AP_PARAM_FLOAT, "ATC_ANG_YAW_P" },
{ Parameters::k_param_pid_rate_roll, 6, AP_PARAM_FLOAT, "ATC_RAT_RLL_FILT" },
{ Parameters::k_param_pid_rate_pitch, 6, AP_PARAM_FLOAT, "ATC_RAT_PIT_FILT" },
{ Parameters::k_param_pid_rate_yaw, 6, AP_PARAM_FLOAT, "ATC_RAT_YAW_FILT" },
{ Parameters::k_param_pi_vel_xy, 0, AP_PARAM_FLOAT, "PSC_VELXY_P" },
{ Parameters::k_param_pi_vel_xy, 1, AP_PARAM_FLOAT, "PSC_VELXY_I" },
{ Parameters::k_param_pi_vel_xy, 2, AP_PARAM_FLOAT, "PSC_VELXY_IMAX" },
{ Parameters::k_param_pi_vel_xy, 3, AP_PARAM_FLOAT, "PSC_VELXY_FILT" },
{ Parameters::k_param_p_vel_z, 0, AP_PARAM_FLOAT, "PSC_VELZ_P" },
{ Parameters::k_param_pid_accel_z, 0, AP_PARAM_FLOAT, "PSC_ACCZ_P" },
{ Parameters::k_param_pid_accel_z, 1, AP_PARAM_FLOAT, "PSC_ACCZ_I" },
{ Parameters::k_param_pid_accel_z, 2, AP_PARAM_FLOAT, "PSC_ACCZ_D" },
{ Parameters::k_param_pid_accel_z, 5, AP_PARAM_FLOAT, "PSC_ACCZ_IMAX" },
{ Parameters::k_param_pid_accel_z, 6, AP_PARAM_FLOAT, "PSC_ACCZ_FILT" },
{ Parameters::k_param_p_alt_hold, 0, AP_PARAM_FLOAT, "PSC_POSZ_P" },
{ Parameters::k_param_p_pos_xy, 0, AP_PARAM_FLOAT, "PSC_POSXY_P" },
};
const AP_Param::ConversionInfo throttle_conversion_info[] = {
{ Parameters::k_param_throttle_min, 0, AP_PARAM_FLOAT, "MOT_SPIN_MIN" },
{ Parameters::k_param_throttle_mid, 0, AP_PARAM_FLOAT, "MOT_THST_HOVER" }
};
const AP_Param::ConversionInfo loiter_conversion_info[] = {
{ Parameters::k_param_wp_nav, 4, AP_PARAM_FLOAT, "LOIT_SPEED" },
{ Parameters::k_param_wp_nav, 7, AP_PARAM_FLOAT, "LOIT_BRK_JERK" },
{ Parameters::k_param_wp_nav, 8, AP_PARAM_FLOAT, "LOIT_ACC_MAX" },
{ Parameters::k_param_wp_nav, 9, AP_PARAM_FLOAT, "LOIT_BRK_ACCEL" }
};
// gains increase by 27% due to attitude controller's switch to use radians instead of centi-degrees
// and motor libraries switch to accept inputs in -1 to +1 range instead of -4500 ~ +4500
float pid_scaler = 1.27f;
#if FRAME_CONFIG != HELI_FRAME
// Multicopter x-frame gains are 40% lower because -1 or +1 input to motors now results in maximum rotation
if (g.frame_type == AP_Motors::MOTOR_FRAME_TYPE_X || g.frame_type == AP_Motors::MOTOR_FRAME_TYPE_V || g.frame_type == AP_Motors::MOTOR_FRAME_TYPE_H) {
pid_scaler = 0.9f;
}
#endif
// scale PID gains
uint8_t table_size = ARRAY_SIZE(pid_conversion_info);
for (uint8_t i=0; i