/* * matrix3.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #pragma GCC optimize("O3") #include "AP_Math.h" // create a rotation matrix given some euler angles // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf template void Matrix3::from_euler(float roll, float pitch, float yaw) { const float cp = cosf(pitch); const float sp = sinf(pitch); const float sr = sinf(roll); const float cr = cosf(roll); const float sy = sinf(yaw); const float cy = cosf(yaw); a.x = cp * cy; a.y = (sr * sp * cy) - (cr * sy); a.z = (cr * sp * cy) + (sr * sy); b.x = cp * sy; b.y = (sr * sp * sy) + (cr * cy); b.z = (cr * sp * sy) - (sr * cy); c.x = -sp; c.y = sr * cp; c.z = cr * cp; } // calculate euler angles from a rotation matrix // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf template void Matrix3::to_euler(float *roll, float *pitch, float *yaw) const { if (pitch != nullptr) { *pitch = -safe_asin(c.x); } if (roll != nullptr) { *roll = atan2f(c.y, c.z); } if (yaw != nullptr) { *yaw = atan2f(b.x, a.x); } } template void Matrix3::from_rotation(enum Rotation rotation) { (*this).a(1,0,0); (*this).b(0,1,0); (*this).c(0,0,1); (*this).a.rotate(rotation); (*this).b.rotate(rotation); (*this).c.rotate(rotation); (*this).transpose(); } /* calculate Euler angles (312 convention) for the matrix. See http://www.atacolorado.com/eulersequences.doc vector is returned in r, p, y order */ template Vector3 Matrix3::to_euler312() const { return Vector3(asinf(c.y), atan2f(-c.x, c.z), atan2f(-a.y, b.y)); } /* fill the matrix from Euler angles in radians in 312 convention */ template void Matrix3::from_euler312(float roll, float pitch, float yaw) { const float c3 = cosf(pitch); const float s3 = sinf(pitch); const float s2 = sinf(roll); const float c2 = cosf(roll); const float s1 = sinf(yaw); const float c1 = cosf(yaw); a.x = c1 * c3 - s1 * s2 * s3; b.y = c1 * c2; c.z = c3 * c2; a.y = -c2*s1; a.z = s3*c1 + c3*s2*s1; b.x = c3*s1 + s3*s2*c1; b.z = s1*s3 - s2*c1*c3; c.x = -s3*c2; c.y = s2; } // apply an additional rotation from a body frame gyro vector // to a rotation matrix. template void Matrix3::rotate(const Vector3 &g) { Matrix3 temp_matrix; temp_matrix.a.x = a.y * g.z - a.z * g.y; temp_matrix.a.y = a.z * g.x - a.x * g.z; temp_matrix.a.z = a.x * g.y - a.y * g.x; temp_matrix.b.x = b.y * g.z - b.z * g.y; temp_matrix.b.y = b.z * g.x - b.x * g.z; temp_matrix.b.z = b.x * g.y - b.y * g.x; temp_matrix.c.x = c.y * g.z - c.z * g.y; temp_matrix.c.y = c.z * g.x - c.x * g.z; temp_matrix.c.z = c.x * g.y - c.y * g.x; (*this) += temp_matrix; } /* re-normalise a rotation matrix */ template void Matrix3::normalize(void) { const float error = a * b; const Vector3 t0 = a - (b * (0.5f * error)); const Vector3 t1 = b - (a * (0.5f * error)); const Vector3 t2 = t0 % t1; a = t0 * (1.0f / t0.length()); b = t1 * (1.0f / t1.length()); c = t2 * (1.0f / t2.length()); } // multiplication by a vector template Vector3 Matrix3::operator *(const Vector3 &v) const { return Vector3(a.x * v.x + a.y * v.y + a.z * v.z, b.x * v.x + b.y * v.y + b.z * v.z, c.x * v.x + c.y * v.y + c.z * v.z); } // multiplication by a vector, extracting only the xy components template Vector2 Matrix3::mulXY(const Vector3 &v) const { return Vector2(a.x * v.x + a.y * v.y + a.z * v.z, b.x * v.x + b.y * v.y + b.z * v.z); } // multiplication of transpose by a vector template Vector3 Matrix3::mul_transpose(const Vector3 &v) const { return Vector3(a.x * v.x + b.x * v.y + c.x * v.z, a.y * v.x + b.y * v.y + c.y * v.z, a.z * v.x + b.z * v.y + c.z * v.z); } // multiplication by another Matrix3 template Matrix3 Matrix3::operator *(const Matrix3 &m) const { Matrix3 temp (Vector3(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x, a.x * m.a.y + a.y * m.b.y + a.z * m.c.y, a.x * m.a.z + a.y * m.b.z + a.z * m.c.z), Vector3(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x, b.x * m.a.y + b.y * m.b.y + b.z * m.c.y, b.x * m.a.z + b.y * m.b.z + b.z * m.c.z), Vector3(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x, c.x * m.a.y + c.y * m.b.y + c.z * m.c.y, c.x * m.a.z + c.y * m.b.z + c.z * m.c.z)); return temp; } template Matrix3 Matrix3::transposed(void) const { return Matrix3(Vector3(a.x, b.x, c.x), Vector3(a.y, b.y, c.y), Vector3(a.z, b.z, c.z)); } template T Matrix3::det() const { return a.x * (b.y * c.z - b.z * c.y) + a.y * (b.z * c.x - b.x * c.z) + a.z * (b.x * c.y - b.y * c.x); } template bool Matrix3::inverse(Matrix3& inv) const { const T d = det(); if (is_zero(d)) { return false; } inv.a.x = (b.y * c.z - c.y * b.z) / d; inv.a.y = (a.z * c.y - a.y * c.z) / d; inv.a.z = (a.y * b.z - a.z * b.y) / d; inv.b.x = (b.z * c.x - b.x * c.z) / d; inv.b.y = (a.x * c.z - a.z * c.x) / d; inv.b.z = (b.x * a.z - a.x * b.z) / d; inv.c.x = (b.x * c.y - c.x * b.y) / d; inv.c.y = (c.x * a.y - a.x * c.y) / d; inv.c.z = (a.x * b.y - b.x * a.y) / d; return true; } template bool Matrix3::invert() { Matrix3 inv; bool success = inverse(inv); if (success) { *this = inv; } return success; } template void Matrix3::zero(void) { a.x = a.y = a.z = 0; b.x = b.y = b.z = 0; c.x = c.y = c.z = 0; } // create rotation matrix for rotation about the vector v by angle theta // See: http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/ template void Matrix3::from_axis_angle(const Vector3 &v, float theta) { const float C = cosf(theta); const float S = sinf(theta); const float t = 1.0f - C; const Vector3f normv = v.normalized(); const float x = normv.x; const float y = normv.y; const float z = normv.z; a.x = t*x*x + C; a.y = t*x*y - z*S; a.z = t*x*z + y*S; b.x = t*x*y + z*S; b.y = t*y*y + C; b.z = t*y*z - x*S; c.x = t*x*z - y*S; c.y = t*y*z + x*S; c.z = t*z*z + C; } // only define for float template void Matrix3::zero(void); template void Matrix3::rotate(const Vector3 &g); template void Matrix3::normalize(void); template void Matrix3::from_euler(float roll, float pitch, float yaw); template void Matrix3::to_euler(float *roll, float *pitch, float *yaw) const; template void Matrix3::from_rotation(enum Rotation rotation); template void Matrix3::from_euler312(float roll, float pitch, float yaw); template void Matrix3::from_axis_angle(const Vector3 &v, float theta); template Vector3 Matrix3::to_euler312(void) const; template Vector3 Matrix3::operator *(const Vector3 &v) const; template Vector3 Matrix3::mul_transpose(const Vector3 &v) const; template Matrix3 Matrix3::operator *(const Matrix3 &m) const; template Matrix3 Matrix3::transposed(void) const; template float Matrix3::det() const; template bool Matrix3::inverse(Matrix3& inv) const; template bool Matrix3::invert(); template Vector2 Matrix3::mulXY(const Vector3 &v) const; template void Matrix3::zero(void); template void Matrix3::rotate(const Vector3 &g); template void Matrix3::from_euler(float roll, float pitch, float yaw); template void Matrix3::to_euler(float *roll, float *pitch, float *yaw) const; template Vector3 Matrix3::operator *(const Vector3 &v) const; template Vector3 Matrix3::mul_transpose(const Vector3 &v) const; template Matrix3 Matrix3::operator *(const Matrix3 &m) const; template Matrix3 Matrix3::transposed(void) const; template double Matrix3::det() const; template bool Matrix3::inverse(Matrix3& inv) const; template bool Matrix3::invert(); template Vector2 Matrix3::mulXY(const Vector3 &v) const;