// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_GPS::var_info[] PROGMEM = { // @Param: TYPE // @DisplayName: GPS type // @Description: GPS type // @Values: 0:None,1:AUTO,2:uBlox,3:MTK,4:MTK19,5:NMEA,6:SiRF,7:HIL,8:SwiftNav AP_GROUPINFO("TYPE", 0, AP_GPS, _type[0], 1), #if GPS_MAX_INSTANCES > 1 // @Param: TYPE2 // @DisplayName: 2nd GPS type // @Description: GPS type of 2nd GPS // @Values: 0:None,1:AUTO,2:uBlox,3:MTK,4:MTK19,5:NMEA,6:SiRF,7:HIL,8:SwiftNav AP_GROUPINFO("TYPE2", 1, AP_GPS, _type[1], 0), #endif // @Param: NAVFILTER // @DisplayName: Navigation filter setting // @Description: Navigation filter engine setting // @Values: 0:Portable,2:Stationary,3:Pedestrian,4:Automotive,5:Sea,6:Airborne1G,7:Airborne2G,8:Airborne4G AP_GROUPINFO("NAVFILTER", 2, AP_GPS, _navfilter, GPS_ENGINE_AIRBORNE_4G), #if GPS_MAX_INSTANCES > 1 // @Param: AUTO_SWITCH // @DisplayName: Automatic Switchover Setting // @Description: Automatic switchover to GPS reporting best lock // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("AUTO_SWITCH", 3, AP_GPS, _auto_switch, 1), #endif #if GPS_RTK_AVAILABLE // @Param: DGPS_MIN_LOCK // @DisplayName: Minimum Lock Type Accepted for DGPS // @Description: Sets the minimum type of differential GPS corrections required before allowing to switch into DGPS mode. // @Values: 0:Any,50:FloatRTK,100:IntegerRTK // @User: Advanced AP_GROUPINFO("MIN_DGPS", 4, AP_GPS, _min_dgps, 100), #endif AP_GROUPEND }; /// Startup initialisation. void AP_GPS::init(DataFlash_Class *dataflash) { _DataFlash = dataflash; hal.uartB->begin(38400UL, 256, 16); primary_instance = 0; #if GPS_MAX_INSTANCES > 1 if (hal.uartE != NULL) { hal.uartE->begin(38400UL, 256, 16); } #endif } // baudrates to try to detect GPSes with const uint32_t AP_GPS::_baudrates[] PROGMEM = {4800U, 38400U, 115200U, 57600U, 9600U}; // initialisation blobs to send to the GPS to try to get it into the // right mode const prog_char AP_GPS::_initialisation_blob[] PROGMEM = UBLOX_SET_BINARY MTK_SET_BINARY SIRF_SET_BINARY; /* send some more initialisation string bytes if there is room in the UART transmit buffer */ void AP_GPS::send_blob_start(uint8_t instance, const prog_char *_blob, uint16_t size) { initblob_state[instance].blob = _blob; initblob_state[instance].remaining = size; } /* send some more initialisation string bytes if there is room in the UART transmit buffer */ void AP_GPS::send_blob_update(uint8_t instance) { // see if we can write some more of the initialisation blob if (initblob_state[instance].remaining > 0) { AP_HAL::UARTDriver *port = instance==0?hal.uartB:hal.uartE; int16_t space = port->txspace(); if (space > (int16_t)initblob_state[instance].remaining) { space = initblob_state[instance].remaining; } while (space > 0) { port->write(pgm_read_byte(initblob_state[instance].blob)); initblob_state[instance].blob++; space--; initblob_state[instance].remaining--; } } } /* run detection step for one GPS instance. If this finds a GPS then it will fill in drivers[instance] and change state[instance].status from NO_GPS to NO_FIX. */ void AP_GPS::detect_instance(uint8_t instance) { AP_GPS_Backend *new_gps = NULL; AP_HAL::UARTDriver *port = instance==0?hal.uartB:hal.uartE; struct detect_state *dstate = &detect_state[instance]; if (port == NULL) { // UART not available return; } uint32_t now = hal.scheduler->millis(); state[instance].instance = instance; state[instance].status = NO_GPS; // record the time when we started detection. This is used to try // to avoid initialising a uBlox as a NMEA GPS if (dstate->detect_started_ms == 0) { dstate->detect_started_ms = now; } if (now - dstate->last_baud_change_ms > 1200) { // try the next baud rate dstate->last_baud++; if (dstate->last_baud == sizeof(_baudrates) / sizeof(_baudrates[0])) { dstate->last_baud = 0; } uint32_t baudrate = pgm_read_dword(&_baudrates[dstate->last_baud]); port->begin(baudrate, 256, 16); dstate->last_baud_change_ms = now; send_blob_start(instance, _initialisation_blob, sizeof(_initialisation_blob)); } send_blob_update(instance); while (port->available() > 0 && new_gps == NULL) { uint8_t data = port->read(); /* running a uBlox at less than 38400 will lead to packet corruption, as we can't receive the packets in the 200ms window for 5Hz fixes. The NMEA startup message should force the uBlox into 38400 no matter what rate it is configured for. */ if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_UBLOX) && pgm_read_dword(&_baudrates[dstate->last_baud]) >= 38400 && AP_GPS_UBLOX::_detect(dstate->ublox_detect_state, data)) { hal.console->print_P(PSTR(" ublox ")); new_gps = new AP_GPS_UBLOX(*this, state[instance], port); } else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK19) && AP_GPS_MTK19::_detect(dstate->mtk19_detect_state, data)) { hal.console->print_P(PSTR(" MTK19 ")); new_gps = new AP_GPS_MTK19(*this, state[instance], port); } else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK) && AP_GPS_MTK::_detect(dstate->mtk_detect_state, data)) { hal.console->print_P(PSTR(" MTK ")); new_gps = new AP_GPS_MTK(*this, state[instance], port); } #if GPS_RTK_AVAILABLE else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SBP) && AP_GPS_SBP::_detect(dstate->sbp_detect_state, data)) { hal.console->print_P(PSTR(" SBP ")); new_gps = new AP_GPS_SBP(*this, state[instance], port); } #endif // HAL_CPU_CLASS #if !defined(GPS_SKIP_SIRF_NMEA) // save a bit of code space on a 1280 else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SIRF) && AP_GPS_SIRF::_detect(dstate->sirf_detect_state, data)) { hal.console->print_P(PSTR(" SIRF ")); new_gps = new AP_GPS_SIRF(*this, state[instance], port); } else if (now - dstate->detect_started_ms > 5000) { // prevent false detection of NMEA mode in // a MTK or UBLOX which has booted in NMEA mode if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_NMEA) && AP_GPS_NMEA::_detect(dstate->nmea_detect_state, data)) { hal.console->print_P(PSTR(" NMEA ")); new_gps = new AP_GPS_NMEA(*this, state[instance], port); } } #endif } if (new_gps != NULL) { state[instance].status = NO_FIX; drivers[instance] = new_gps; timing[instance].last_message_time_ms = now; } } bool AP_GPS::can_calculate_base_pos(void) { #if GPS_RTK_AVAILABLE for (uint8_t i=0; ican_calculate_base_pos()) { return true; } } #endif return false; } /* Tells the underlying GPS drivers to capture its current position as home. */ void AP_GPS::calculate_base_pos(void) { #if GPS_RTK_AVAILABLE for (uint8_t i = 0; ican_calculate_base_pos()) { drivers[i]->calculate_base_pos(); } } #endif } AP_GPS::GPS_Status AP_GPS::highest_supported_status(uint8_t instance) const { #if GPS_RTK_AVAILABLE if (drivers[instance] != NULL) return drivers[instance]->highest_supported_status(); #endif return AP_GPS::GPS_OK_FIX_3D; } AP_GPS::GPS_Status AP_GPS::highest_supported_status(void) const { #if GPS_RTK_AVAILABLE if (drivers[primary_instance] != NULL) return drivers[primary_instance]->highest_supported_status(); #endif return AP_GPS::GPS_OK_FIX_3D; } /* update one GPS instance. This should be called at 10Hz or greater */ void AP_GPS::update_instance(uint8_t instance) { if (_type[instance] == GPS_TYPE_HIL) { // in HIL, leave info alone return; } if (_type[instance] == GPS_TYPE_NONE) { // not enabled state[instance].status = NO_GPS; return; } if (locked_ports & (1U<read(); uint32_t tnow = hal.scheduler->millis(); // if we did not get a message, and the idle timer of 1.2 seconds // has expired, re-initialise the GPS. This will cause GPS // detection to run again if (!result) { if (tnow - timing[instance].last_message_time_ms > 1200) { // free the driver before we run the next detection, so we // don't end up with two allocated at any time delete drivers[instance]; drivers[instance] = NULL; memset(&state[instance], 0, sizeof(state[instance])); state[instance].instance = instance; state[instance].status = NO_GPS; timing[instance].last_message_time_ms = tnow; } } else { timing[instance].last_message_time_ms = tnow; if (state[instance].status >= GPS_OK_FIX_2D) { timing[instance].last_fix_time_ms = tnow; } } } /* update all GPS instances */ void AP_GPS::update(void) { for (uint8_t i=0; i 1 // work out which GPS is the primary, and how many sensors we have for (uint8_t i=0; i state[primary_instance].status) { // we have a higher status lock, change GPS primary_instance = i; continue; } if (state[i].status == state[primary_instance].status && state[i].num_sats >= state[primary_instance].num_sats + 2) { // this GPS has at least 2 more satellites than the // current primary, switch primary. Once we switch we will // then tend to stick to the new GPS as primary. We don't // want to switch too often as it will look like a // position shift to the controllers. primary_instance = i; } } else { primary_instance = 0; } } #else num_instances = 1; #endif // GPS_MAX_INSTANCES // update notify with gps status. We always base this on the primary_instance AP_Notify::flags.gps_status = state[primary_instance].status; } /* set HIL (hardware in the loop) status for a GPS instance */ void AP_GPS::setHIL(uint8_t instance, GPS_Status _status, uint64_t time_epoch_ms, const Location &_location, const Vector3f &_velocity, uint8_t _num_sats, uint16_t hdop, bool _have_vertical_velocity) { if (instance >= GPS_MAX_INSTANCES) { return; } uint32_t tnow = hal.scheduler->millis(); GPS_State &istate = state[instance]; istate.status = _status; istate.location = _location; istate.location.options = 0; istate.velocity = _velocity; istate.ground_speed = pythagorous2(istate.velocity.x, istate.velocity.y); istate.ground_course_cd = degrees(atan2f(istate.velocity.y, istate.velocity.x)) * 100UL; istate.hdop = hdop; istate.num_sats = _num_sats; istate.have_vertical_velocity = _have_vertical_velocity; istate.last_gps_time_ms = tnow; istate.time_week = time_epoch_ms / (86400*7*(uint64_t)1000); istate.time_week_ms = time_epoch_ms - istate.time_week*(86400*7*(uint64_t)1000); timing[instance].last_message_time_ms = tnow; timing[instance].last_fix_time_ms = tnow; _type[instance].set(GPS_TYPE_HIL); } /** Lock a GPS port, prevening the GPS driver from using it. This can be used to allow a user to control a GPS port via the SERIAL_CONTROL protocol */ void AP_GPS::lock_port(uint8_t instance, bool lock) { if (instance >= GPS_MAX_INSTANCES) { return; } if (lock) { locked_ports |= (1U< 1 void AP_GPS::send_mavlink_gps2_raw(mavlink_channel_t chan) { static uint32_t last_send_time_ms2; if (num_sensors() > 1 && status(1) > AP_GPS::NO_GPS && (last_send_time_ms2 == 0 || last_send_time_ms2 != last_message_time_ms(1))) { const Location &loc = location(1); last_send_time_ms2 = last_message_time_ms(1); mavlink_msg_gps2_raw_send( chan, last_fix_time_ms(1)*(uint64_t)1000, status(1), loc.lat, loc.lng, loc.alt * 10UL, get_hdop(1), 65535, ground_speed(1)*100, // cm/s ground_course_cd(1), // 1/100 degrees, num_sats(1), 0, 0); } } #endif #if GPS_RTK_AVAILABLE void AP_GPS::send_mavlink_gps_rtk(mavlink_channel_t chan) { if (drivers[0] != NULL && drivers[0]->highest_supported_status() > AP_GPS::GPS_OK_FIX_3D) { drivers[0]->send_mavlink_gps_rtk(chan); } } #if GPS_MAX_INSTANCES > 1 void AP_GPS::send_mavlink_gps2_rtk(mavlink_channel_t chan) { if (drivers[1] != NULL && drivers[1]->highest_supported_status() > AP_GPS::GPS_OK_FIX_3D) { drivers[1]->send_mavlink_gps_rtk(chan); } } #endif #endif