/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * * Sensor is conected to I2C port * Sensor is initialized in Continuos mode (10Hz) * */ // AVR LibC Includes #include #include #include "AP_Compass_HMC5843.h" #include #include extern const AP_HAL::HAL& hal; #define HMC5843_I2C_ADDR 0x1E #define ConfigRegA 0x00 #define ConfigRegB 0x01 #define magGain 0x20 #define PositiveBiasConfig 0x11 #define NegativeBiasConfig 0x12 #define NormalOperation 0x10 #define ModeRegister 0x02 #define ContinuousConversion 0x00 #define SingleConversion 0x01 // ConfigRegA valid sample averaging for 5883L #define SampleAveraging_1 0x00 #define SampleAveraging_2 0x01 #define SampleAveraging_4 0x02 #define SampleAveraging_8 0x03 // ConfigRegA valid data output rates for 5883L #define DataOutputRate_0_75HZ 0x00 #define DataOutputRate_1_5HZ 0x01 #define DataOutputRate_3HZ 0x02 #define DataOutputRate_7_5HZ 0x03 #define DataOutputRate_15HZ 0x04 #define DataOutputRate_30HZ 0x05 #define DataOutputRate_75HZ 0x06 // constructor AP_Compass_HMC5843::AP_Compass_HMC5843(Compass &compass, AP_HMC5843_SerialBus *bus) : AP_Compass_Backend(compass), _bus(bus), _retry_time(0), _mag_x(0), _mag_y(0), _mag_z(0), _mag_x_accum(0), _mag_y_accum(0), _mag_z_accum(0), _accum_count(0), _last_accum_time(0), _compass_instance(0), _product_id(0) {} AP_Compass_HMC5843::~AP_Compass_HMC5843() { delete _bus; } // detect the sensor AP_Compass_Backend *AP_Compass_HMC5843::detect_i2c(Compass &compass, AP_HAL::I2CDriver *i2c) { AP_HMC5843_SerialBus *bus = new AP_HMC5843_SerialBus_I2C(i2c, HMC5843_I2C_ADDR); if (!bus) return nullptr; return _detect(compass, bus); } AP_Compass_Backend *AP_Compass_HMC5843::detect_mpu6000(Compass &compass) { AP_InertialSensor &ins = *AP_InertialSensor::get_instance(); AP_HMC5843_SerialBus *bus = new AP_HMC5843_SerialBus_MPU6000(ins, HMC5843_I2C_ADDR); if (!bus) return nullptr; return _detect(compass, bus); } AP_Compass_Backend *AP_Compass_HMC5843::_detect(Compass &compass, AP_HMC5843_SerialBus *bus) { AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass, bus); if (!sensor) { delete bus; return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } // read_register - read a register value bool AP_Compass_HMC5843::read_register(uint8_t address, uint8_t *value) { if (_bus->register_read(address, value) != 0) { _retry_time = hal.scheduler->millis() + 1000; return false; } return true; } // write_register - update a register value bool AP_Compass_HMC5843::write_register(uint8_t address, uint8_t value) { if (_bus->register_write(address, value) != 0) { _retry_time = hal.scheduler->millis() + 1000; return false; } return true; } // Read Sensor data bool AP_Compass_HMC5843::read_raw() { struct AP_HMC5843_SerialBus::raw_value rv; if (_bus->read_raw(&rv) != 0) { _bus->set_high_speed(false); _retry_time = hal.scheduler->millis() + 1000; return false; } int16_t rx, ry, rz; rx = (((int16_t)rv.val[0]) << 8) | rv.val[1]; if (_product_id == AP_COMPASS_TYPE_HMC5883L) { rz = (((int16_t)rv.val[2]) << 8) | rv.val[3]; ry = (((int16_t)rv.val[4]) << 8) | rv.val[5]; } else { ry = (((int16_t)rv.val[2]) << 8) | rv.val[3]; rz = (((int16_t)rv.val[4]) << 8) | rv.val[5]; } if (rx == -4096 || ry == -4096 || rz == -4096) { // no valid data available return false; } _mag_x = -rx; _mag_y = ry; _mag_z = -rz; return true; } // accumulate a reading from the magnetometer void AP_Compass_HMC5843::accumulate(void) { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return; } uint32_t tnow = hal.scheduler->micros(); if (_accum_count != 0 && (tnow - _last_accum_time) < 13333) { // the compass gets new data at 75Hz return; } if (!_bus_sem->take(1)) { // the bus is busy - try again later return; } bool result = read_raw(); _bus_sem->give(); if (result) { // the _mag_N values are in the range -2048 to 2047, so we can // accumulate up to 15 of them in an int16_t. Let's make it 14 // for ease of calculation. We expect to do reads at 10Hz, and // we get new data at most 75Hz, so we don't expect to // accumulate more than 8 before a read // get raw_field - sensor frame, uncorrected Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z); // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, tnow, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); // publish raw_field (corrected point sample) for EKF use publish_unfiltered_field(raw_field, tnow, _compass_instance); _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 14) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 7; } _last_accum_time = tnow; } } /* * re-initialise after a IO error */ bool AP_Compass_HMC5843::re_initialise() { if (!write_register(ConfigRegA, _base_config) || !write_register(ConfigRegB, magGain) || !write_register(ModeRegister, ContinuousConversion)) return false; return true; } bool AP_Compass_HMC5843::_detect_version() { _base_config = 0x0; if (!write_register(ConfigRegA, SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation) || !read_register(ConfigRegA, &_base_config)) { return false; } if (_base_config == (SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation)) { /* a 5883L supports the sample averaging config */ _product_id = AP_COMPASS_TYPE_HMC5883L; return true; } else if (_base_config == (NormalOperation | DataOutputRate_75HZ<<2)) { _product_id = AP_COMPASS_TYPE_HMC5843; return true; } else { /* not behaving like either supported compass type */ return false; } } // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_HMC5843::init() { uint8_t calibration_gain = 0x20; uint16_t expected_x = 715; uint16_t expected_yz = 715; _gain_multiple = 1.0; _bus_sem = _bus->get_semaphore(); hal.scheduler->suspend_timer_procs(); if (!_bus_sem || !_bus_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf_P(PSTR("HMC5843: Unable to get bus semaphore\n")); goto fail_sem; } if (!_bus->configure()) { hal.console->printf_P(PSTR("HMC5843: Could not configure the bus\n")); goto errout; } if (!_detect_version()) { hal.console->printf_P(PSTR("HMC5843: Could not detect version\n")); goto errout; } if (_product_id == AP_COMPASS_TYPE_HMC5883L) { calibration_gain = 0x60; /* note that the HMC5883 datasheet gives the x and y expected values as 766 and the z as 713. Experiments have shown the x axis is around 766, and the y and z closer to 713. */ expected_x = 766; expected_yz = 713; _gain_multiple = 660.0f / 1090; // adjustment for runtime vs calibration gain } if (!_calibrate(calibration_gain, expected_x, expected_yz)) { hal.console->printf_P(PSTR("HMC5843: Could not calibrate sensor\n")); goto errout; } // leave test mode if (!re_initialise()) { goto errout; } if (!_bus->start_measurements()) { hal.console->printf_P(PSTR("HMC5843: Could not start measurements on bus\n")); goto errout; } _initialised = true; _bus_sem->give(); hal.scheduler->resume_timer_procs(); // perform an initial read read(); #if 0 hal.console->printf_P(PSTR("CalX: %.2f CalY: %.2f CalZ: %.2f\n"), _scaling[0], _scaling[1], _scaling[2]); #endif _compass_instance = register_compass(); set_dev_id(_compass_instance, _product_id); set_milligauss_ratio(_compass_instance, 1.0f / _gain_multiple); #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT set_external(_compass_instance, true); #endif return true; errout: _bus_sem->give(); fail_sem: hal.scheduler->resume_timer_procs(); return false; } bool AP_Compass_HMC5843::_calibrate(uint8_t calibration_gain, uint16_t expected_x, uint16_t expected_yz) { int numAttempts = 0, good_count = 0; bool success = false; while (success == 0 && numAttempts < 25 && good_count < 5) { numAttempts++; // force positiveBias (compass should return 715 for all channels) if (!write_register(ConfigRegA, PositiveBiasConfig)) continue; // compass not responding on the bus hal.scheduler->delay(50); // set gains if (!write_register(ConfigRegB, calibration_gain) || !write_register(ModeRegister, SingleConversion)) continue; // read values from the compass hal.scheduler->delay(50); if (!read_raw()) continue; // we didn't read valid values hal.scheduler->delay(10); float cal[3]; // hal.console->printf_P(PSTR("mag %d %d %d\n"), _mag_x, _mag_y, _mag_z); cal[0] = fabsf(expected_x / (float)_mag_x); cal[1] = fabsf(expected_yz / (float)_mag_y); cal[2] = fabsf(expected_yz / (float)_mag_z); // hal.console->printf_P(PSTR("cal=%.2f %.2f %.2f\n"), cal[0], cal[1], cal[2]); // we throw away the first two samples as the compass may // still be changing its state from the application of the // strap excitation. After that we accept values in a // reasonable range if (numAttempts <= 2) { continue; } #define IS_CALIBRATION_VALUE_VALID(val) (val > 0.7f && val < 1.35f) if (IS_CALIBRATION_VALUE_VALID(cal[0]) && IS_CALIBRATION_VALUE_VALID(cal[1]) && IS_CALIBRATION_VALUE_VALID(cal[2])) { // hal.console->printf_P(PSTR("car=%.2f %.2f %.2f good\n"), cal[0], cal[1], cal[2]); good_count++; _scaling[0] += cal[0]; _scaling[1] += cal[1]; _scaling[2] += cal[2]; } #undef IS_CALIBRATION_VALUE_VALID #if 0 /* useful for debugging */ hal.console->printf_P(PSTR("MagX: %d MagY: %d MagZ: %d\n"), (int)_mag_x, (int)_mag_y, (int)_mag_z); hal.console->printf_P(PSTR("CalX: %.2f CalY: %.2f CalZ: %.2f\n"), cal[0], cal[1], cal[2]); #endif } if (good_count >= 5) { /* The use of _gain_multiple below is incorrect, as the gain difference between 2.5Ga mode and 1Ga mode is already taken into account by the expected_x and expected_yz values. We are not going to fix it however as it would mean all APM1/APM2 users redoing their compass calibration. The impact is that the values we report on APM1/APM2 are lower than they should be (by a multiple of about 0.6). This doesn't have any impact other than the learned compass offsets */ _scaling[0] = _scaling[0] * _gain_multiple / good_count; _scaling[1] = _scaling[1] * _gain_multiple / good_count; _scaling[2] = _scaling[2] * _gain_multiple / good_count; success = true; } else { /* best guess */ _scaling[0] = 1.0; _scaling[1] = 1.0; _scaling[2] = 1.0; } return success; } // Read Sensor data void AP_Compass_HMC5843::read() { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return; } if (_retry_time != 0) { if (hal.scheduler->millis() < _retry_time) { return; } if (!re_initialise()) { _retry_time = hal.scheduler->millis() + 1000; _bus->set_high_speed(false); return; } } if (_accum_count == 0) { accumulate(); if (_retry_time != 0) { _bus->set_high_speed(false); return; } } Vector3f field(_mag_x_accum * _scaling[0], _mag_y_accum * _scaling[1], _mag_z_accum * _scaling[2]); field /= _accum_count; _accum_count = 0; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; // rotate to the desired orientation if (_product_id == AP_COMPASS_TYPE_HMC5883L) { field.rotate(ROTATION_YAW_90); } publish_filtered_field(field, _compass_instance); _retry_time = 0; } /* I2C implementation of the HMC5843 */ AP_HMC5843_SerialBus_I2C::AP_HMC5843_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _i2c(i2c) , _addr(addr) { } void AP_HMC5843_SerialBus_I2C::set_high_speed(bool val) { _i2c->setHighSpeed(val); } uint8_t AP_HMC5843_SerialBus_I2C::register_read(uint8_t reg, uint8_t *buf, uint8_t size) { return _i2c->readRegisters(_addr, reg, size, buf); } uint8_t AP_HMC5843_SerialBus_I2C::register_write(uint8_t reg, uint8_t val) { return _i2c->writeRegister(_addr, reg, val); } AP_HAL::Semaphore* AP_HMC5843_SerialBus_I2C::get_semaphore() { return _i2c->get_semaphore(); } uint8_t AP_HMC5843_SerialBus_I2C::read_raw(struct raw_value *rv) { return register_read(0x03, (uint8_t*)rv, sizeof(*rv)); } /* MPU6000 implementation of the HMC5843 */ AP_HMC5843_SerialBus_MPU6000::AP_HMC5843_SerialBus_MPU6000(AP_InertialSensor &ins, uint8_t addr) { // Only initialize members. Fails are handled by configure or while // getting the semaphore _bus = ins.get_auxiliar_bus(HAL_INS_MPU60XX_SPI); if (!_bus) return; _slave = _bus->request_next_slave(addr); } AP_HMC5843_SerialBus_MPU6000::~AP_HMC5843_SerialBus_MPU6000() { /* After started it's owned by AuxiliaryBus */ if (!_started) delete _slave; } bool AP_HMC5843_SerialBus_MPU6000::configure() { if (!_bus || !_slave) return false; return true; } void AP_HMC5843_SerialBus_MPU6000::set_high_speed(bool val) { } uint8_t AP_HMC5843_SerialBus_MPU6000::register_read(uint8_t reg, uint8_t *buf, uint8_t size) { return _slave->passthrough_read(reg, buf, size) == size ? 0 : 1; } uint8_t AP_HMC5843_SerialBus_MPU6000::register_write(uint8_t reg, uint8_t val) { return _slave->passthrough_write(reg, val) >= 0 ? 0 : 1; } AP_HAL::Semaphore* AP_HMC5843_SerialBus_MPU6000::get_semaphore() { return _bus ? _bus->get_semaphore() : nullptr; } uint8_t AP_HMC5843_SerialBus_MPU6000::read_raw(struct raw_value *rv) { if (_started) return _slave->read((uint8_t*)rv) >= 0 ? 0 : 1; return _slave->passthrough_read(0x03, (uint8_t*)rv, sizeof(*rv)) >= 0 ? 0 : 1; } bool AP_HMC5843_SerialBus_MPU6000::start_measurements() { if (_bus->register_periodic_read(_slave, 0x03, sizeof(struct raw_value)) < 0) return false; _started = true; return true; }