/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsSingle.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsSingle::var_info[] = { // variables from parent vehicle AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), // parameters 1 ~ 29 were reserved for tradheli // parameters 30 ~ 39 reserved for tricopter // parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) // 40 was ROLL_SV_REV // 41 was PITCH_SV_REV // 42 was YAW_SV_REV // @Param: SV_SPEED // @DisplayName: Servo speed // @Description: Servo update speed in hz // @Values: 50, 125, 250 AP_GROUPINFO("SV_SPEED", 43, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), // @Group: SV1_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo1, "SV1_", 44, AP_MotorsSingle, RC_Channel), // @Group: SV2_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo2, "SV2_", 45, AP_MotorsSingle, RC_Channel), // @Group: SV3_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo3, "SV3_", 46, AP_MotorsSingle, RC_Channel), // @Group: SV4_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo4, "SV4_", 47, AP_MotorsSingle, RC_Channel), AP_GROUPEND }; // init void AP_MotorsSingle::init(motor_frame_class frame_class, motor_frame_type frame_type) { // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_5] = true; motor_enabled[AP_MOTORS_MOT_6] = true; // we set four servos to angle _servo1.set_type(RC_CHANNEL_TYPE_ANGLE); _servo2.set_type(RC_CHANNEL_TYPE_ANGLE); _servo3.set_type(RC_CHANNEL_TYPE_ANGLE); _servo4.set_type(RC_CHANNEL_TYPE_ANGLE); _servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); // allow mapping of motor7 add_motor_num(CH_7); // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_SINGLE); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsSingle::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { _flags.initialised_ok = (frame_class == MOTOR_FRAME_SINGLE); } // set update rate to motors - a value in hertz void AP_MotorsSingle::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 ; rc_set_freq(mask, _servo_speed); uint32_t mask2 = 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6 ; rc_set_freq(mask2, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsSingle::enable() { // enable output channels rc_enable_ch(AP_MOTORS_MOT_1); rc_enable_ch(AP_MOTORS_MOT_2); rc_enable_ch(AP_MOTORS_MOT_3); rc_enable_ch(AP_MOTORS_MOT_4); rc_enable_ch(AP_MOTORS_MOT_5); rc_enable_ch(AP_MOTORS_MOT_6); } void AP_MotorsSingle::output_to_motors() { switch (_spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough - _yaw_radio_passthrough, _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough - _yaw_radio_passthrough, _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(-_roll_radio_passthrough - _yaw_radio_passthrough, _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-_pitch_radio_passthrough - _yaw_radio_passthrough, _servo4)); rc_write(AP_MOTORS_MOT_5, get_pwm_output_min()); rc_write(AP_MOTORS_MOT_6, get_pwm_output_min()); hal.rcout->push(); break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, calc_spin_up_to_pwm()); rc_write(AP_MOTORS_MOT_6, calc_spin_up_to_pwm()); hal.rcout->push(); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: // set motor output based on thrust requests hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out)); rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out)); hal.rcout->push(); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsSingle::get_motor_mask() { uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; return rc_map_mask(mask); } // sends commands to the motors void AP_MotorsSingle::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float actuator_allowed = 0.0f; // amount of yaw we can fit in float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator float actuator_max = 0.0f; // maximum actuator value // apply voltage and air pressure compensation roll_thrust = _roll_in * get_compensation_gain(); pitch_thrust = _pitch_in * get_compensation_gain(); yaw_thrust = _yaw_in * get_compensation_gain(); throttle_thrust = get_throttle() * get_compensation_gain(); // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } _throttle_avg_max = constrain_float(_throttle_avg_max, throttle_thrust, _throttle_thrust_max); float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust)); // calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw if (is_zero(rp_thrust_max)) { rp_scale = 1.0f; } else { rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f); if (rp_scale < 1.0f) { limit.roll_pitch = true; } } actuator_allowed = 1.0f - rp_scale * rp_thrust_max; if (fabsf(yaw_thrust) > actuator_allowed) { yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed); limit.yaw = true; } // combine roll, pitch and yaw on each actuator // front servo actuator[0] = rp_scale * roll_thrust - yaw_thrust; // right servo actuator[1] = rp_scale * pitch_thrust - yaw_thrust; // rear servo actuator[2] = -rp_scale * roll_thrust - yaw_thrust; // left servo actuator[3] = -rp_scale * pitch_thrust - yaw_thrust; // calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3]))); thr_adj = throttle_thrust - _throttle_avg_max; if (thr_adj < (thrust_min_rpy - _throttle_avg_max)) { // Throttle can't be reduced to the desired level because this would mean roll or pitch control // would not be able to reach the desired level because of lack of thrust. thr_adj = MIN(thrust_min_rpy, _throttle_avg_max) - _throttle_avg_max; } // calculate the throttle setting for the lift fan _thrust_out = _throttle_avg_max + thr_adj; if (is_zero(_thrust_out)) { limit.roll_pitch = true; limit.yaw = true; } // limit thrust out for calculation of actuator gains float thrust_out_actuator = constrain_float(MAX(_throttle_hover*0.5f,_thrust_out), 0.1f, 1.0f); // calculate the maximum allowed actuator output and maximum requested actuator output for (uint8_t i=0; i fabsf(actuator[i])) { actuator_max = fabsf(actuator[i]); } } if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) { // roll, pitch and yaw request can not be achieved at full servo defection // reduce roll, pitch and yaw to reduce the requested defection to maximum limit.roll_pitch = true; limit.yaw = true; rp_scale = thrust_out_actuator/actuator_max; } else { rp_scale = 1.0f; } // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared // static thrust is proportional to the airflow velocity squared // therefore the torque of the roll and pitch actuators should be approximately proportional to // the angle of attack multiplied by the static thrust. for (uint8_t i=0; i