// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef __RANGEFINDER_H__ #define __RANGEFINDER_H__ #include #include #include #include #include // Maximum number of range finder instances available on this platform #define RANGEFINDER_MAX_INSTANCES 2 #define RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT 10 #define RANGEFINDER_PREARM_ALT_MAX_CM 200 #define RANGEFINDER_PREARM_REQUIRED_CHANGE_CM 50 class AP_RangeFinder_Backend; class RangeFinder { public: friend class AP_RangeFinder_Backend; RangeFinder(AP_SerialManager &_serial_manager); // RangeFinder driver types enum RangeFinder_Type { RangeFinder_TYPE_NONE = 0, RangeFinder_TYPE_ANALOG = 1, RangeFinder_TYPE_MBI2C = 2, RangeFinder_TYPE_PLI2C = 3, RangeFinder_TYPE_PX4 = 4, RangeFinder_TYPE_PX4_PWM= 5, RangeFinder_TYPE_BBB_PRU= 6, RangeFinder_TYPE_LWI2C = 7, RangeFinder_TYPE_LWSER = 8 }; enum RangeFinder_Function { FUNCTION_LINEAR = 0, FUNCTION_INVERTED = 1, FUNCTION_HYPERBOLA = 2 }; enum RangeFinder_Status { RangeFinder_NotConnected = 0, RangeFinder_NoData, RangeFinder_OutOfRangeLow, RangeFinder_OutOfRangeHigh, RangeFinder_Good }; // The RangeFinder_State structure is filled in by the backend driver struct RangeFinder_State { uint8_t instance; // the instance number of this RangeFinder uint16_t distance_cm; // distance: in cm uint16_t voltage_mv; // voltage in millivolts, // if applicable, otherwise 0 enum RangeFinder_Status status; // sensor status uint8_t range_valid_count; // number of consecutive valid readings (maxes out at 10) bool pre_arm_check; // true if sensor has passed pre-arm checks uint16_t pre_arm_distance_min; // min distance captured during pre-arm checks uint16_t pre_arm_distance_max; // max distance captured during pre-arm checks }; // parameters for each instance AP_Int8 _type[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _pin[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _ratiometric[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _stop_pin[RANGEFINDER_MAX_INSTANCES]; AP_Int16 _settle_time_ms[RANGEFINDER_MAX_INSTANCES]; AP_Float _scaling[RANGEFINDER_MAX_INSTANCES]; AP_Float _offset[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _function[RANGEFINDER_MAX_INSTANCES]; AP_Int16 _min_distance_cm[RANGEFINDER_MAX_INSTANCES]; AP_Int16 _max_distance_cm[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _ground_clearance_cm[RANGEFINDER_MAX_INSTANCES]; AP_Int8 _address[RANGEFINDER_MAX_INSTANCES]; AP_Int16 _powersave_range; static const struct AP_Param::GroupInfo var_info[]; // Return the number of range finder instances uint8_t num_sensors(void) const { return num_instances; } // detect and initialise any available rangefinders void init(void); // update state of all rangefinders. Should be called at around // 10Hz from main loop void update(void); #define _RangeFinder_STATE(instance) state[instance] uint16_t distance_cm(uint8_t instance) const { return _RangeFinder_STATE(instance).distance_cm; } uint16_t distance_cm() const { return distance_cm(primary_instance); } uint16_t voltage_mv(uint8_t instance) const { return _RangeFinder_STATE(instance).voltage_mv; } uint16_t voltage_mv() const { return voltage_mv(primary_instance); } int16_t max_distance_cm(uint8_t instance) const { return _max_distance_cm[instance]; } int16_t max_distance_cm() const { return max_distance_cm(primary_instance); } int16_t min_distance_cm(uint8_t instance) const { return _min_distance_cm[instance]; } int16_t min_distance_cm() const { return min_distance_cm(primary_instance); } int16_t ground_clearance_cm(uint8_t instance) const { return _ground_clearance_cm[instance]; } int16_t ground_clearance_cm() const { return _ground_clearance_cm[primary_instance]; } // query status RangeFinder_Status status(uint8_t instance) const; RangeFinder_Status status(void) const { return status(primary_instance); } // true if sensor is returning data bool has_data(uint8_t instance) const; bool has_data() const { return has_data(primary_instance); } // returns count of consecutive good readings uint8_t range_valid_count() const { return range_valid_count(primary_instance); } uint8_t range_valid_count(uint8_t instance) const { return _RangeFinder_STATE(instance).range_valid_count; } /* set an externally estimated terrain height. Used to enable power saving (where available) at high altitudes. */ void set_estimated_terrain_height(float height) { estimated_terrain_height = height; } /* returns true if pre-arm checks have passed for all range finders these checks involve the user lifting or rotating the vehicle so that sensor readings between the min and 2m can be captured */ bool pre_arm_check() const; private: RangeFinder_State state[RANGEFINDER_MAX_INSTANCES]; AP_RangeFinder_Backend *drivers[RANGEFINDER_MAX_INSTANCES]; uint8_t primary_instance:2; uint8_t num_instances:2; float estimated_terrain_height; AP_SerialManager &serial_manager; void detect_instance(uint8_t instance); void update_instance(uint8_t instance); void update_pre_arm_check(uint8_t instance); }; #endif // __RANGEFINDER_H__