// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** static void navigate() { // do not navigate with corrupt data // --------------------------------- if (g_gps->fix == 0){ g_gps->new_data = false; return; } if(next_WP.lat == 0){ return; } // waypoint distance from plane // ---------------------------- wp_distance = get_distance(¤t_loc, &next_WP); if (wp_distance < 0){ //gcs.send_text_P(SEVERITY_HIGH,PSTR(" WP error - distance < 0")); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); // nav_bearing will include xtrac correction // ----------------------------------------- //xtrack_enabled = false; if(xtrack_enabled){ nav_bearing = wrap_360(target_bearing + get_crosstrack_correction()); }else{ nav_bearing = target_bearing; } } static bool check_missed_wp() { long temp = target_bearing - saved_target_bearing; temp = wrap_180(temp); return (abs(temp) > 10000); //we pased the waypoint by 10 ° } // ------------------------------ // long_error, lat_error static void calc_location_error() { /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m = 36 feet 1800 = 19.80m = 60 feet 3000 = 33m 10000 = 111m pitch_max = 22° (2200) */ // X ROLL long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST // Y PITCH lat_error = next_WP.lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH } #define NAV_ERR_MAX 400 static void calc_nav_rate(int x_error, int y_error, int max_speed, int min_speed) { // moved to globals for logging //int x_actual_speed, y_actual_speed; //int x_rate_error, y_rate_error; x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); float scaler = (float)max_speed/(float)NAV_ERR_MAX; g.pi_loiter_lat.kP(scaler); g.pi_loiter_lon.kP(scaler); int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); //Serial.printf("scaler: %1.3f, y_target_speed %d",scaler,y_target_speed); if(x_target_speed > 0){ x_target_speed = max(x_target_speed, min_speed); }else{ x_target_speed = min(x_target_speed, -min_speed); } if(y_target_speed > 0){ y_target_speed = max(y_target_speed, min_speed); }else{ y_target_speed = min(y_target_speed, -min_speed); } // find the rates: // calc the cos of the error to tell how fast we are moving towards the target in cm y_actual_speed = (float)g_gps->ground_speed * cos(radians((float)g_gps->ground_course/100.0)); y_rate_error = y_target_speed - y_actual_speed; // 413 nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500); //Serial.printf("yr: %d, nav_lat: %d, int:%d \n",y_rate_error, nav_lat, g.pi_nav_lat.get_integrator()); // calc the sin of the error to tell how fast we are moving laterally to the target in cm x_actual_speed = (float)g_gps->ground_speed * sin(radians((float)g_gps->ground_course/100.0)); x_rate_error = x_target_speed - x_actual_speed; nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500); } // nav_roll, nav_pitch static void calc_nav_pitch_roll() { // rotate the vector nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; // flip pitch because forward is negative nav_pitch = -nav_pitch; } // ------------------------------ static void calc_bearing_error() { bearing_error = nav_bearing - dcm.yaw_sensor; bearing_error = wrap_180(bearing_error); } static long get_altitude_error() { return next_WP.alt - current_loc.alt; } /* static void calc_altitude_smoothing_error() { // limit climb rates - we draw a straight line between first location and edge of waypoint_radius target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius)); // stay within a certain range if(prev_WP.alt > next_WP.alt){ target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); }else{ target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); } altitude_error = target_altitude - current_loc.alt; } */ static int get_loiter_angle() { float power; int angle; if(wp_distance <= g.loiter_radius){ power = float(wp_distance) / float(g.loiter_radius); power = constrain(power, 0.5, 1); angle = 90.0 * (2.0 + power); }else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); angle = power * 90; } return angle; } static long wrap_360(long error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } static long wrap_180(long error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } static long get_crosstrack_correction(void) { // Crosstrack Error // ---------------- if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following // Meters we are off track line float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; // take meters * 100 to get adjustment to nav_bearing long _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100; // constrain answer to 30° to avoid overshoot return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); } return 0; } static long cross_track_test() { long temp = wrap_180(target_bearing - crosstrack_bearing); return abs(temp); } static void reset_crosstrack() { crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following } static long get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } // distance is returned in meters static long get_distance(struct Location *loc1, struct Location *loc2) { //if(loc1->lat == 0 || loc1->lng == 0) // return -1; //if(loc2->lat == 0 || loc2->lng == 0) // return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } static long get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } static long get_bearing(struct Location *loc1, struct Location *loc2) { long off_x = loc2->lng - loc1->lng; long off_y = (loc2->lat - loc1->lat) * scaleLongUp; long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }