// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"reboot", reboot_board}, {"help", main_menu_help} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) { reboot_apm(); return 0; } // the user wants the CLI. It never exits static void run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { #if USB_MUX_PIN > 0 // on the APM2 board we have a mux thet switches UART0 between // USB and the board header. If the right ArduPPM firmware is // installed we can detect if USB is connected using the // USB_MUX_PIN pinMode(USB_MUX_PIN, INPUT); usb_connected = !digitalRead(USB_MUX_PIN); if (!usb_connected) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } #endif // Console serial port // // The console port buffers are defined to be sufficiently large to support // the console's use as a logging device, optionally as the GPS port when // GPS_PROTOCOL_IMU is selected, and as the telemetry port. // // XXX This could be optimised to reduce the buffer sizes in the cases // where they are not otherwise required. // hal.uartA->begin(SERIAL0_BAUD, 128, 128); // GPS serial port. // // XXX currently the EM406 (SiRF receiver) is nominally configured // at 57600, however it's not been supported to date. We should // probably standardise on 38400. // // XXX the 128 byte receive buffer may be too small for NMEA, depending // on the message set configured. // // standard gps running hal.uartB->begin(115200, 128, 16); cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), memcheck_available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); // after parameter load setup correct baud rate on uartA hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD)); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init the GCS gcs0.init(hal.uartA); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); #if USB_MUX_PIN > 0 if (!usb_connected) { // we are not connected via USB, re-init UART0 with right // baud rate hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); } #else // we have a 2nd serial port for telemetry hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); gcs3.init(hal.uartC); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED DataFlash.Init(); // DataFlash log initialization if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); } if (g.log_bitmask != 0) { DataFlash.start_new_log(); } #endif #if HIL_MODE != HIL_MODE_ATTITUDE #if CONFIG_ADC == ENABLED adc.Init(); // APM ADC library initialization #endif if (g.compass_enabled==true) { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init()|| !compass.read()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference } } // initialise sonar init_sonar(); #endif // Do GPS init g_gps = &g_gps_driver; // GPS initialisation g_gps->init(hal.uartB, GPS::GPS_ENGINE_AUTOMOTIVE); //mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id mavlink_system.type = MAV_TYPE_GROUND_ROVER; rc_override_active = hal.rcin->set_overrides(rc_override, 8); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs pinMode(C_LED_PIN, OUTPUT); // GPS status LED pinMode(A_LED_PIN, OUTPUT); // GPS status LED pinMode(B_LED_PIN, OUTPUT); // GPS status LED #if SLIDE_SWITCH_PIN > 0 pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode #endif #if CONFIG_PUSHBUTTON == ENABLED pinMode(PUSHBUTTON_PIN, INPUT); // unused #endif #if CONFIG_RELAY == ENABLED relay.init(); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check, 1000); // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // #if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED if (digitalRead(SLIDE_SWITCH_PIN) == 0) { digitalWrite(A_LED_PIN,LED_ON); // turn on setup-mode LED cliSerial->printf_P(PSTR("\n" "Entering interactive setup mode...\n" "\n" "If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n" "Type 'help' to list commands, 'exit' to leave a submenu.\n" "Visit the 'setup' menu for first-time configuration.\n")); cliSerial->println_P(PSTR("\nMove the slide switch and reset to FLY.\n")); run_cli(&cliSerial); } #else const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); #if USB_MUX_PIN == 0 hal.uartC->println_P(msg); #endif #endif // CLI_ENABLED startup_ground(); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); set_mode(MANUAL); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(SEVERITY_LOW,PSTR(" GROUND START")); #if(GROUND_START_DELAY > 0) gcs_send_text_P(SEVERITY_LOW,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif // Makes the servos wiggle // step 1 = 1 wiggle // ----------------------- demo_servos(1); //IMU ground start //------------------------ // startup_INS_ground(false); // read the radio to set trims // --------------------------- trim_radio(); // initialize commands // ------------------- init_commands(); // Makes the servos wiggle - 3 times signals ready to fly // ----------------------- demo_servos(3); gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive.")); } static void set_mode(enum mode mode) { if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } control_mode = mode; throttle_last = 0; throttle = 500; if (control_mode != AUTO) { auto_triggered = false; } switch(control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: break; case AUTO: rtl_complete = false; restart_nav(); break; case RTL: do_RTL(); break; default: do_RTL(); break; } if (g.log_bitmask & MASK_LOG_MODE) Log_Write_Mode(control_mode); } /* called to set/unset a failsafe event. */ static void failsafe_trigger(uint8_t failsafe_type, bool on) { uint8_t old_bits = failsafe.bits; if (on) { failsafe.bits |= failsafe_type; } else { failsafe.bits &= ~failsafe_type; } if (old_bits == 0 && failsafe.bits != 0) { // a failsafe event has started failsafe.start_time = millis(); } if (failsafe.triggered != 0 && failsafe.bits == 0) { // a failsafe event has ended gcs_send_text_fmt(PSTR("Failsafe ended")); } failsafe.triggered &= failsafe.bits; if (failsafe.triggered == 0 && failsafe.bits != 0 && millis() - failsafe.start_time > g.fs_timeout*1000 && control_mode != RTL && control_mode != HOLD) { failsafe.triggered = failsafe.bits; gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered); switch (g.fs_action) { case 0: break; case 1: set_mode(RTL); break; case 2: set_mode(HOLD); break; } } } static void startup_INS_ground(bool force_accel_level) { #if HIL_MODE != HIL_MODE_ATTITUDE gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); mavlink_delay(500); // Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! // ----------------------- demo_servos(2); gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle")); mavlink_delay(1000); ahrs.init(); ahrs.set_fly_forward(true); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); if (force_accel_level) { // when MANUAL_LEVEL is set to 1 we don't do accelerometer // levelling on each boot, and instead rely on the user to do // it once via the ground station ins.init_accel(flash_leds); ahrs.set_trim(Vector3f(0, 0, 0)); } ahrs.reset(); #endif // HIL_MODE_ATTITUDE digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate INS ready digitalWrite(A_LED_PIN, LED_OFF); digitalWrite(C_LED_PIN, LED_OFF); } static void update_GPS_light(void) { // GPS LED on if we have a fix or Blink GPS LED if we are receiving data // --------------------------------------------------------------------- switch (g_gps->status()) { case(2): digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix. break; case(1): if (g_gps->valid_read == true){ GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock if (GPS_light){ digitalWrite(C_LED_PIN, LED_OFF); } else { digitalWrite(C_LED_PIN, LED_ON); } g_gps->valid_read = false; } break; default: digitalWrite(C_LED_PIN, LED_OFF); break; } } static void resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; ahrs.renorm_range_count = 0; ahrs.renorm_blowup_count = 0; gps_fix_count = 0; pmTest1 = 0; perf_mon_timer = millis(); } /* map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 1: return 1200; case 2: return 2400; case 4: return 4800; case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); return default_baud; } #if USB_MUX_PIN > 0 static void check_usb_mux(void) { bool usb_check = !digitalRead(USB_MUX_PIN); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; if (usb_connected) { hal.uartA->begin(SERIAL0_BAUD, 128, 128); } else { hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); } } #endif /* called by gyro/accel init to flash LEDs so user has some mesmerising lights to watch while waiting */ void flash_leds(bool on) { digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON); digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF); } /* * Read Vcc vs 1.1v internal reference */ uint16_t board_voltage(void) { return vcc_pin->read_latest(); } static void print_mode(uint8_t mode) { switch (mode) { case MANUAL: cliSerial->println_P(PSTR("Manual")); break; case HOLD: cliSerial->println_P(PSTR("HOLD")); break; case LEARNING: cliSerial->println_P(PSTR("Learning")); break; case STEERING: cliSerial->println_P(PSTR("Stearing")); break; case AUTO: cliSerial->println_P(PSTR("AUTO")); break; case RTL: cliSerial->println_P(PSTR("RTL")); break; default: cliSerial->println_P(PSTR("---")); break; } } /* force a software reset of the APM */ static void reboot_apm(void) { hal.scheduler->reboot(); while (1); }