/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == QUAD_FRAME static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4), g.rc_speed); #endif } static void motors_output_enable() { APM_RC.enable_out(MOT_1); APM_RC.enable_out(MOT_2); APM_RC.enable_out(MOT_3); APM_RC.enable_out(MOT_4); } static void output_motors_armed() { int roll_out, pitch_out; int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); if(g.frame_orientation == X_FRAME){ roll_out = (float)g.rc_1.pwm_out * 0.707; pitch_out = (float)g.rc_2.pwm_out * 0.707; // left motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK // right motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK }else{ roll_out = g.rc_1.pwm_out; pitch_out = g.rc_2.pwm_out; // right motor motor_out[MOT_1] = g.rc_3.radio_out - roll_out; // left motor motor_out[MOT_2] = g.rc_3.radio_out + roll_out; // front motor motor_out[MOT_3] = g.rc_3.radio_out + pitch_out; // back motor motor_out[MOT_4] = g.rc_3.radio_out - pitch_out; } // Yaw input motor_out[MOT_1] += g.rc_4.pwm_out; // CCW motor_out[MOT_2] += g.rc_4.pwm_out; // CCW motor_out[MOT_3] -= g.rc_4.pwm_out; // CW motor_out[MOT_4] -= g.rc_4.pwm_out; // CW /* We need to clip motor output at out_max. When cipping a motors * output we also need to compensate for the instability by * lowering the opposite motor by the same proportion. This * ensures that we retain control when one or more of the motors * is at its maximum output */ for (int i = MOT_1; i <= MOT_4; i++){ if(motor_out[i] > out_max){ // note that i^1 is the opposite motor motor_out[i ^ 1] -= motor_out[i] - out_max; motor_out[i] = out_max; } } // limit output so motors don't stop motor_out[MOT_1] = max(motor_out[MOT_1], out_min); motor_out[MOT_2] = max(motor_out[MOT_2], out_min); motor_out[MOT_3] = max(motor_out[MOT_3], out_min); motor_out[MOT_4] = max(motor_out[MOT_4], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_3] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; } #endif APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); APM_RC.OutputCh(MOT_3, motor_out[MOT_3]); APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); #endif //debug_motors(); } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 8; i++){ motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); } /* //static void debug_motors() { Serial.printf("1:%d\t2:%d\t3:%d\t4:%d\n", motor_out[MOT_1], motor_out[MOT_2], motor_out[MOT_3], motor_out[MOT_4]); } //*/ static void output_motor_test() { motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_3] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; if(g.frame_orientation == X_FRAME){ APM_RC.OutputCh(MOT_3, g.rc_2.radio_min); delay(4000); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); delay(2000); APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_4, g.rc_1.radio_min); delay(2000); APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_2, g.rc_4.radio_min); delay(2000); APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100); delay(300); }else{ APM_RC.OutputCh(MOT_2, g.rc_2.radio_min); delay(4000); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); delay(2000); APM_RC.OutputCh(MOT_1, g.rc_1.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_1, g.rc_1.radio_min); delay(2000); APM_RC.OutputCh(MOT_4, g.rc_4.radio_min + 100); delay(300); APM_RC.OutputCh(MOT_4, g.rc_4.radio_min); delay(2000); APM_RC.OutputCh(MOT_2, g.rc_2.radio_min + 100); delay(300); } APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); APM_RC.OutputCh(MOT_3, motor_out[MOT_3]); APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); } #endif