#include "Copter.h" Mode::_TakeOff Mode::takeoff; bool Mode::auto_takeoff_no_nav_active = false; float Mode::auto_takeoff_no_nav_alt_cm = 0; float Mode::auto_take_off_start_alt_cm = 0; float Mode::auto_take_off_complete_alt_cm = 0; bool Mode::auto_takeoff_terrain_alt = false; bool Mode::auto_takeoff_complete = false; Vector3p Mode::auto_takeoff_complete_pos; // This file contains the high-level takeoff logic for Loiter, PosHold, AltHold, Sport modes. // The take-off can be initiated from a GCS NAV_TAKEOFF command which includes a takeoff altitude // A safe takeoff speed is calculated and used to calculate a time_ms // the pos_control target is then slowly increased until time_ms expires bool Mode::do_user_takeoff_start(float takeoff_alt_cm) { copter.flightmode->takeoff.start(takeoff_alt_cm); return true; } // initiate user takeoff - called when MAVLink TAKEOFF command is received bool Mode::do_user_takeoff(float takeoff_alt_cm, bool must_navigate) { if (!copter.motors->armed()) { return false; } if (!copter.ap.land_complete) { // can't takeoff again! return false; } if (!has_user_takeoff(must_navigate)) { // this mode doesn't support user takeoff return false; } if (takeoff_alt_cm <= copter.current_loc.alt) { // can't takeoff downwards... return false; } // Vehicles using motor interlock should return false if motor interlock is disabled. // Interlock must be enabled to allow the controller to spool up the motor(s) for takeoff. if (!motors->get_interlock() && copter.ap.using_interlock) { return false; } if (!do_user_takeoff_start(takeoff_alt_cm)) { return false; } copter.set_auto_armed(true); return true; } // start takeoff to specified altitude above home in centimeters void Mode::_TakeOff::start(float alt_cm) { // indicate we are taking off copter.set_land_complete(false); // tell position controller to reset alt target and reset I terms copter.flightmode->set_throttle_takeoff(); // initialise takeoff state _running = true; take_off_start_alt = copter.pos_control->get_pos_target_z_cm(); take_off_complete_alt = take_off_start_alt + alt_cm; } // stop takeoff void Mode::_TakeOff::stop() { _running = false; } // do_pilot_takeoff - controls the vertical position controller during the process of taking off // take off is complete when the vertical target reaches the take off altitude. // climb is cancelled if pilot_climb_rate_cm becomes negative // sets take off to complete when target altitude is within 1% of the take off altitude void Mode::_TakeOff::do_pilot_takeoff(float& pilot_climb_rate_cm) { // return pilot_climb_rate if take-off inactive if (!_running) { return; } float pos_z = take_off_complete_alt; float vel_z = pilot_climb_rate_cm; // command the aircraft to the take off altitude and current pilot climb rate copter.pos_control->input_pos_vel_accel_z(pos_z, vel_z, 0); // stop take off early and return if negative climb rate is commanded or we are within 0.1% of our take off altitude if (is_negative(pilot_climb_rate_cm) || (take_off_complete_alt - take_off_start_alt) * 0.999f < copter.pos_control->get_pos_target_z_cm() - take_off_start_alt) { stop(); } } // auto_takeoff_run - controls the vertical position controller during the process of taking off in auto modes // auto_takeoff_complete set to true when target altitude is within 10% of the take off altitude and less than 50% max climb rate void Mode::auto_takeoff_run() { // if not armed set throttle to zero and exit immediately if (!motors->armed() || !copter.ap.auto_armed) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // get terrain offset float terr_offset = 0.0f; if (auto_takeoff_terrain_alt && !wp_nav->get_terrain_offset(terr_offset)) { gcs().send_text(MAV_SEVERITY_CRITICAL, "auto takeoff: failed to get terrain offset"); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && copter.flightmode->use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // aircraft stays in landed state until rotor speed run up has finished if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_land_complete(false); } else { // motors have not completed spool up yet so relax navigation and position controllers pos_control->relax_velocity_controller_xy(); pos_control->update_xy_controller(); pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero pos_control->update_z_controller(); attitude_control->reset_yaw_target_and_rate(); attitude_control->reset_rate_controller_I_terms(); attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); return; } // check if we are not navigating because of low altitude if (auto_takeoff_no_nav_active) { // check if vehicle has reached no_nav_alt threshold if (inertial_nav.get_position_z_up_cm() >= auto_takeoff_no_nav_alt_cm) { auto_takeoff_no_nav_active = false; } pos_control->relax_velocity_controller_xy(); } else { Vector2f vel; Vector2f accel; pos_control->input_vel_accel_xy(vel, accel); } pos_control->update_xy_controller(); // command the aircraft to the take off altitude float pos_z = auto_take_off_complete_alt_cm + terr_offset; float vel_z = 0.0; copter.pos_control->input_pos_vel_accel_z(pos_z, vel_z, 0.0); // run the vertical position controller and set output throttle pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from position controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll & pitch from position controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds()); } // handle takeoff completion bool reached_altitude = (copter.pos_control->get_pos_target_z_cm() - auto_take_off_start_alt_cm) >= ((auto_take_off_complete_alt_cm - auto_take_off_start_alt_cm) * 0.90); bool reached_climb_rate = copter.pos_control->get_vel_desired_cms().z < copter.pos_control->get_max_speed_up_cms() * 0.1; auto_takeoff_complete = reached_altitude && reached_climb_rate; // calculate completion for location in case it is needed for a smooth transition to wp_nav if (auto_takeoff_complete) { const Vector3p& complete_pos = copter.pos_control->get_pos_target_cm(); auto_takeoff_complete_pos = Vector3p{complete_pos.x, complete_pos.y, pos_z}; } } void Mode::auto_takeoff_start(float complete_alt_cm, bool terrain_alt) { auto_take_off_start_alt_cm = inertial_nav.get_position_z_up_cm(); auto_take_off_complete_alt_cm = complete_alt_cm; auto_takeoff_terrain_alt = terrain_alt; auto_takeoff_complete = false; if ((g2.wp_navalt_min > 0) && (is_disarmed_or_landed() || !motors->get_interlock())) { // we are not flying, climb with no navigation to current alt-above-ekf-origin + wp_navalt_min auto_takeoff_no_nav_alt_cm = auto_take_off_start_alt_cm + g2.wp_navalt_min * 100; auto_takeoff_no_nav_active = true; } else { auto_takeoff_no_nav_active = false; } } // return takeoff final position if takeoff has completed successfully bool Mode::auto_takeoff_get_position(Vector3p& complete_pos) { // only provide location if takeoff has completed if (!auto_takeoff_complete) { return false; } complete_pos = auto_takeoff_complete_pos; return true; } bool Mode::is_taking_off() const { if (!has_user_takeoff(false)) { return false; } if (copter.ap.land_complete) { return false; } return takeoff.running(); }