#include "AC_AttitudeControl.h" #include extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) // default gains for Plane # define AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT 0.2f // Soft #else // default gains for Copter and Sub # define AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT 0.15f // Medium #endif // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl::var_info[] = { // 0, 1 were RATE_RP_MAX, RATE_Y_MAX // @Param: SLEW_YAW // @DisplayName: Yaw target slew rate // @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes // @Units: cdeg/s // @Range: 500 18000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS), // 3 was for ACCEL_RP_MAX // @Param: ACCEL_Y_MAX // @DisplayName: Acceleration Max for Yaw // @Description: Maximum acceleration in yaw axis // @Units: cdeg/s/s // @Range: 0 72000 // @Values: 0:Disabled, 9000:VerySlow, 18000:Slow, 36000:Medium, 54000:Fast // @Increment: 1000 // @User: Advanced AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_yaw_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS), // @Param: RATE_FF_ENAB // @DisplayName: Rate Feedforward Enable // @Description: Controls whether body-frame rate feedfoward is enabled or disabled // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("RATE_FF_ENAB", 5, AC_AttitudeControl, _rate_bf_ff_enabled, AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT), // @Param: ACCEL_R_MAX // @DisplayName: Acceleration Max for Roll // @Description: Maximum acceleration in roll axis // @Units: cdeg/s/s // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 30000:VerySlow, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_R_MAX", 6, AC_AttitudeControl, _accel_roll_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // @Param: ACCEL_P_MAX // @DisplayName: Acceleration Max for Pitch // @Description: Maximum acceleration in pitch axis // @Units: cdeg/s/s // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 30000:VerySlow, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_P_MAX", 7, AC_AttitudeControl, _accel_pitch_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // IDs 8,9,10,11 RESERVED (in use on Solo) // @Param: ANGLE_BOOST // @DisplayName: Angle Boost // @Description: Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("ANGLE_BOOST", 12, AC_AttitudeControl, _angle_boost_enabled, 1), // @Param: ANG_RLL_P // @DisplayName: Roll axis angle controller P gain // @Description: Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_roll, "ANG_RLL_", 13, AC_AttitudeControl, AC_P), // @Param: ANG_PIT_P // @DisplayName: Pitch axis angle controller P gain // @Description: Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_pitch, "ANG_PIT_", 14, AC_AttitudeControl, AC_P), // @Param: ANG_YAW_P // @DisplayName: Yaw axis angle controller P gain // @Description: Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate // @Range: 3.000 6.000 // @Range{Sub}: 0.0 6.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_yaw, "ANG_YAW_", 15, AC_AttitudeControl, AC_P), // @Param: ANG_LIM_TC // @DisplayName: Angle Limit (to maintain altitude) Time Constant // @Description: Angle Limit (to maintain altitude) Time Constant // @Range: 0.5 10.0 // @User: Advanced AP_GROUPINFO("ANG_LIM_TC", 16, AC_AttitudeControl, _angle_limit_tc, AC_ATTITUDE_CONTROL_ANGLE_LIMIT_TC_DEFAULT), // @Param: RATE_R_MAX // @DisplayName: Angular Velocity Max for Roll // @Description: Maximum angular velocity in roll axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_R_MAX", 17, AC_AttitudeControl, _ang_vel_roll_max, 0.0f), // @Param: RATE_P_MAX // @DisplayName: Angular Velocity Max for Pitch // @Description: Maximum angular velocity in pitch axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_P_MAX", 18, AC_AttitudeControl, _ang_vel_pitch_max, 0.0f), // @Param: RATE_Y_MAX // @DisplayName: Angular Velocity Max for Yaw // @Description: Maximum angular velocity in yaw axis // @Units: deg/s // @Range: 0 1080 // @Increment: 1 // @Values: 0:Disabled, 360:Slow, 720:Medium, 1080:Fast // @User: Advanced AP_GROUPINFO("RATE_Y_MAX", 19, AC_AttitudeControl, _ang_vel_yaw_max, 0.0f), // @Param: INPUT_TC // @DisplayName: Attitude control input time constant // @Description: Attitude control input time constant. Low numbers lead to sharper response, higher numbers to softer response // @Units: s // @Range: 0 1 // @Increment: 0.01 // @Values: 0.5:Very Soft, 0.2:Soft, 0.15:Medium, 0.1:Crisp, 0.05:Very Crisp // @User: Standard AP_GROUPINFO("INPUT_TC", 20, AC_AttitudeControl, _input_tc, AC_ATTITUDE_CONTROL_INPUT_TC_DEFAULT), AP_GROUPEND }; // Ensure attitude controller have zero errors to relax rate controller output void AC_AttitudeControl::relax_attitude_controllers() { // Initialize the attitude variables to the current attitude _ahrs.get_quat_body_to_ned(_attitude_target_quat); _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); _attitude_ang_error.initialise(); // Initialize the angular rate variables to the current rate _attitude_target_ang_vel = _ahrs.get_gyro(); ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); _rate_target_ang_vel = _ahrs.get_gyro(); // Initialize remaining variables _thrust_error_angle = 0.0f; // Reset the PID filters get_rate_roll_pid().reset_filter(); get_rate_pitch_pid().reset_filter(); get_rate_yaw_pid().reset_filter(); // Reset the I terms reset_rate_controller_I_terms(); } void AC_AttitudeControl::reset_rate_controller_I_terms() { get_rate_roll_pid().reset_I(); get_rate_pitch_pid().reset_I(); get_rate_yaw_pid().reset_I(); } // The attitude controller works around the concept of the desired attitude, target attitude // and measured attitude. The desired attitude is the attitude input into the attitude controller // that expresses where the higher level code would like the aircraft to move to. The target attitude is moved // to the desired attitude with jerk, acceleration, and velocity limits. The target angular velocities are fed // directly into the rate controllers. The angular error between the measured attitude and the target attitude is // fed into the angle controller and the output of the angle controller summed at the input of the rate controllers. // By feeding the target angular velocity directly into the rate controllers the measured and target attitudes // remain very close together. // // All input functions below follow the same procedure // 1. define the desired attitude the aircraft should attempt to achieve using the input variables // 2. using the desired attitude and input variables, define the target angular velocity so that it should // move the target attitude towards the desired attitude // 3. if _rate_bf_ff_enabled is not being used then make the target attitude // and target angular velocities equal to the desired attitude and desired angular velocities. // 4. ensure _attitude_target_quat, _attitude_target_euler_angle, _attitude_target_euler_rate and // _attitude_target_ang_vel have been defined. This ensures input modes can be changed without discontinuity. // 5. attitude_controller_run_quat is then run to pass the target angular velocities to the rate controllers and // integrate them into the target attitude. Any errors between the target attitude and the measured attitude are // corrected by first correcting the thrust vector until the angle between the target thrust vector measured // trust vector drops below 2*AC_ATTITUDE_THRUST_ERROR_ANGLE. At this point the heading is also corrected. // Command a Quaternion attitude with feedforward and smoothing void AC_AttitudeControl::input_quaternion(Quaternion attitude_desired_quat) { // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); Quaternion attitude_error_quat = _attitude_target_quat.inverse() * attitude_desired_quat; Vector3f attitude_error_angle; attitude_error_quat.to_axis_angle(attitude_error_angle); if (_rate_bf_ff_enabled) { // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by _input_tc at the end. _attitude_target_ang_vel.x = input_shaping_angle(wrap_PI(attitude_error_angle.x), _input_tc, get_accel_roll_max_radss(), _attitude_target_ang_vel.x, _dt); _attitude_target_ang_vel.y = input_shaping_angle(wrap_PI(attitude_error_angle.y), _input_tc, get_accel_pitch_max_radss(), _attitude_target_ang_vel.y, _dt); _attitude_target_ang_vel.z = input_shaping_angle(wrap_PI(attitude_error_angle.z), _input_tc, get_accel_yaw_max_radss(), _attitude_target_ang_vel.z, _dt); // Limit the angular velocity ang_vel_limit(_attitude_target_ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); } else { _attitude_target_quat = attitude_desired_quat; // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_angle = radians(euler_roll_angle_cd * 0.01f); float euler_pitch_angle = radians(euler_pitch_angle_cd * 0.01f); float euler_yaw_rate = radians(euler_yaw_rate_cds * 0.01f); // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle += get_roll_trim_rad(); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss())); // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by smoothing_gain at the end. _attitude_target_euler_rate.x = input_shaping_angle(wrap_PI(euler_roll_angle - _attitude_target_euler_angle.x), _input_tc, euler_accel.x, _attitude_target_euler_rate.x, _dt); _attitude_target_euler_rate.y = input_shaping_angle(wrap_PI(euler_pitch_angle - _attitude_target_euler_angle.y), _input_tc, euler_accel.y, _attitude_target_euler_rate.y, _dt); // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. _attitude_target_euler_rate.z = input_shaping_ang_vel(_attitude_target_euler_rate.z, euler_yaw_rate, euler_accel.z, _dt); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel); // Limit the angular velocity ang_vel_limit(_attitude_target_ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. _attitude_target_euler_angle.x = euler_roll_angle; _attitude_target_euler_angle.y = euler_pitch_angle; _attitude_target_euler_angle.z += euler_yaw_rate * _dt; // Compute quaternion target attitude _attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw) { // Convert from centidegrees on public interface to radians float euler_roll_angle = radians(euler_roll_angle_cd * 0.01f); float euler_pitch_angle = radians(euler_pitch_angle_cd * 0.01f); float euler_yaw_angle = radians(euler_yaw_angle_cd * 0.01f); // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle += get_roll_trim_rad(); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss())); // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by _input_tc at the end. _attitude_target_euler_rate.x = input_shaping_angle(wrap_PI(euler_roll_angle - _attitude_target_euler_angle.x), _input_tc, euler_accel.x, _attitude_target_euler_rate.x, _dt); _attitude_target_euler_rate.y = input_shaping_angle(wrap_PI(euler_pitch_angle - _attitude_target_euler_angle.y), _input_tc, euler_accel.y, _attitude_target_euler_rate.y, _dt); _attitude_target_euler_rate.z = input_shaping_angle(wrap_PI(euler_yaw_angle - _attitude_target_euler_angle.z), _input_tc, euler_accel.z, _attitude_target_euler_rate.z, _dt); if (slew_yaw) { _attitude_target_euler_rate.z = constrain_float(_attitude_target_euler_rate.z, -get_slew_yaw_rads(), get_slew_yaw_rads()); } // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel); // Limit the angular velocity ang_vel_limit(_attitude_target_ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. _attitude_target_euler_angle.x = euler_roll_angle; _attitude_target_euler_angle.y = euler_pitch_angle; if (slew_yaw) { // Compute constrained angle error float angle_error = constrain_float(wrap_PI(euler_yaw_angle - _attitude_target_euler_angle.z), -get_slew_yaw_rads() * _dt, get_slew_yaw_rads() * _dt); // Update attitude target from constrained angle error _attitude_target_euler_angle.z = wrap_PI(angle_error + _attitude_target_euler_angle.z); } else { _attitude_target_euler_angle.z = euler_yaw_angle; } // Compute quaternion target attitude _attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command euler pitch and yaw angles and roll rate (used only by tailsitter quadplanes) // Multicopter style controls: roll stick is tailsitter bodyframe yaw in hover void AC_AttitudeControl::input_euler_rate_yaw_euler_angle_pitch_bf_roll_m(float euler_yaw_rate_cds, float euler_pitch_cd, float body_roll_cd) { // Convert from centidegrees on public interface to radians float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f); float euler_pitch = radians(constrain_float(euler_pitch_cd * 0.01f, -90.0f, 90.0f)); float body_roll = radians(constrain_float(body_roll_cd * 0.01f, -90.0f, 90.0f)); // Compute attitude error Quaternion attitude_vehicle_quat; Quaternion error_quat; attitude_vehicle_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned()); error_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat; Vector3f att_error; error_quat.to_axis_angle(att_error); // limit yaw error if (fabsf(att_error.z) < AC_ATTITUDE_THRUST_ERROR_ANGLE) { // update heading _attitude_target_euler_angle.z = wrap_PI(_attitude_target_euler_angle.z + euler_yaw_rate * _dt); } // init attitude target to desired euler yaw and pitch with zero roll _attitude_target_quat.from_euler(0, euler_pitch, _attitude_target_euler_angle.z); const float cpitch = cosf(euler_pitch); const float spitch = fabsf(sinf(euler_pitch)); // apply body-frame yaw/roll (this is roll/yaw for a tailsitter in forward flight) // rotate body_roll axis by |sin(pitch angle)| Quaternion bf_roll_Q; bf_roll_Q.from_axis_angle(Vector3f(0, 0, spitch * body_roll)); // rotate body_yaw axis by cos(pitch angle) Quaternion bf_yaw_Q; bf_yaw_Q.from_axis_angle(Vector3f(-cpitch * body_roll, 0, 0)); _attitude_target_quat = _attitude_target_quat * bf_roll_Q * bf_yaw_Q; // _attitude_target_euler_angle roll and pitch: Note: roll/yaw will be indeterminate when pitch is near +/-90 // These should be used only for logging target eulers, with the caveat noted above. // Also note that _attitude_target_quat.from_euler() should only be used in special circumstances // such as when attitude is specified directly in terms of Euler angles. // _attitude_target_euler_angle.x = _attitude_target_quat.get_euler_roll(); // _attitude_target_euler_angle.y = euler_pitch; // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); // Compute attitude error error_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat; error_quat.to_axis_angle(att_error); // Compute the angular velocity target from the attitude error _rate_target_ang_vel = update_ang_vel_target_from_att_error(att_error); } // Command euler pitch and yaw angles and roll rate (used only by tailsitter quadplanes) // Plane style controls: yaw stick is tailsitter bodyframe yaw in hover void AC_AttitudeControl::input_euler_rate_yaw_euler_angle_pitch_bf_roll_p(float euler_yaw_rate_cds, float euler_pitch_cd, float body_roll_cd) { // Convert from centidegrees on public interface to radians float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f); float euler_pitch = radians(constrain_float(euler_pitch_cd * 0.01f, -90.0f, 90.0f)); float body_roll = radians(constrain_float(body_roll_cd * 0.01f, -90.0f, 90.0f)); const float cpitch = cosf(euler_pitch); const float spitch = fabsf(sinf(euler_pitch)); // Compute attitude error Quaternion attitude_vehicle_quat; Quaternion error_quat; attitude_vehicle_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned()); error_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat; Vector3f att_error; error_quat.to_axis_angle(att_error); // limit yaw error if (fabsf(att_error.z) < AC_ATTITUDE_THRUST_ERROR_ANGLE) { // update heading float yaw_rate = euler_yaw_rate * spitch + body_roll * cpitch; _attitude_target_euler_angle.z = wrap_PI(_attitude_target_euler_angle.z + yaw_rate * _dt); } // init attitude target to desired euler yaw and pitch with zero roll _attitude_target_quat.from_euler(0, euler_pitch, _attitude_target_euler_angle.z); // apply body-frame yaw/roll (this is roll/yaw for a tailsitter in forward flight) // rotate body_roll axis by |sin(pitch angle)| Quaternion bf_roll_Q; bf_roll_Q.from_axis_angle(Vector3f(0, 0, spitch * body_roll)); // rotate body_yaw axis by cos(pitch angle) Quaternion bf_yaw_Q; bf_yaw_Q.from_axis_angle(Vector3f(cpitch, 0, 0), euler_yaw_rate); _attitude_target_quat = _attitude_target_quat * bf_roll_Q * bf_yaw_Q; // _attitude_target_euler_angle roll and pitch: Note: roll/yaw will be indeterminate when pitch is near +/-90 // These should be used only for logging target eulers, with the caveat noted above // Also note that _attitude_target_quat.from_euler() should only be used in special circumstances // such as when attitude is specified directly in terms of Euler angles. // _attitude_target_euler_angle.x = _attitude_target_quat.get_euler_roll(); // _attitude_target_euler_angle.y = euler_pitch; // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); // Compute attitude error error_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat; error_quat.to_axis_angle(att_error); // Compute the angular velocity target from the attitude error _rate_target_ang_vel = update_ang_vel_target_from_att_error(att_error); } // Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_rate = radians(euler_roll_rate_cds * 0.01f); float euler_pitch_rate = radians(euler_pitch_rate_cds * 0.01f); float euler_yaw_rate = radians(euler_yaw_rate_cds * 0.01f); // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss())); // When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing // the output rate towards the input rate. _attitude_target_euler_rate.x = input_shaping_ang_vel(_attitude_target_euler_rate.x, euler_roll_rate, euler_accel.x, _dt); _attitude_target_euler_rate.y = input_shaping_ang_vel(_attitude_target_euler_rate.y, euler_pitch_rate, euler_accel.y, _dt); _attitude_target_euler_rate.z = input_shaping_ang_vel(_attitude_target_euler_rate.z, euler_yaw_rate, euler_accel.z, _dt); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel); } else { // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. // Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities. _attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + euler_roll_rate * _dt); _attitude_target_euler_angle.y = constrain_float(_attitude_target_euler_angle.y + euler_pitch_rate * _dt, radians(-85.0f), radians(85.0f)); _attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + euler_yaw_rate * _dt); // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); // Compute quaternion target attitude _attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an angular velocity with angular velocity feedforward and smoothing void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); if (_rate_bf_ff_enabled) { // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _attitude_target_ang_vel.x = input_shaping_ang_vel(_attitude_target_ang_vel.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _attitude_target_ang_vel.y = input_shaping_ang_vel(_attitude_target_ang_vel.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _attitude_target_ang_vel.z = input_shaping_ang_vel(_attitude_target_ang_vel.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); } else { // When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed. Quaternion attitude_target_update_quat; attitude_target_update_quat.from_axis_angle(Vector3f(roll_rate_rads * _dt, pitch_rate_rads * _dt, yaw_rate_rads * _dt)); _attitude_target_quat = _attitude_target_quat * attitude_target_update_quat; _attitude_target_quat.normalize(); // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); } // Call quaternion attitude controller attitude_controller_run_quat(); } // Command an angular velocity with angular velocity smoothing using rate loops only with no attitude loop stabilization void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _attitude_target_ang_vel.x = input_shaping_ang_vel(_attitude_target_ang_vel.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _attitude_target_ang_vel.y = input_shaping_ang_vel(_attitude_target_ang_vel.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _attitude_target_ang_vel.z = input_shaping_ang_vel(_attitude_target_ang_vel.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Update the unused targets attitude based on current attitude to condition mode change _ahrs.get_quat_body_to_ned(_attitude_target_quat); _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); _rate_target_ang_vel = _attitude_target_ang_vel; } // Command an angular velocity with angular velocity smoothing using rate loops only with integrated rate error stabilization void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_rads = radians(roll_rate_bf_cds * 0.01f); float pitch_rate_rads = radians(pitch_rate_bf_cds * 0.01f); float yaw_rate_rads = radians(yaw_rate_bf_cds * 0.01f); // Update attitude error Vector3f attitude_error_vector; _attitude_ang_error.to_axis_angle(attitude_error_vector); Quaternion attitude_ang_error_update_quat; // limit the integrated error angle float err_mag = attitude_error_vector.length(); if (err_mag > AC_ATTITUDE_THRUST_ERROR_ANGLE) { attitude_error_vector *= AC_ATTITUDE_THRUST_ERROR_ANGLE / err_mag; _attitude_ang_error.from_axis_angle(attitude_error_vector); } Vector3f gyro_latest = _ahrs.get_gyro_latest(); attitude_ang_error_update_quat.from_axis_angle(Vector3f((_attitude_target_ang_vel.x-gyro_latest.x) * _dt, (_attitude_target_ang_vel.y-gyro_latest.y) * _dt, (_attitude_target_ang_vel.z-gyro_latest.z) * _dt)); _attitude_ang_error = attitude_ang_error_update_quat * _attitude_ang_error; // Compute acceleration-limited body frame rates // When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing // the output rate towards the input rate. _attitude_target_ang_vel.x = input_shaping_ang_vel(_attitude_target_ang_vel.x, roll_rate_rads, get_accel_roll_max_radss(), _dt); _attitude_target_ang_vel.y = input_shaping_ang_vel(_attitude_target_ang_vel.y, pitch_rate_rads, get_accel_pitch_max_radss(), _dt); _attitude_target_ang_vel.z = input_shaping_ang_vel(_attitude_target_ang_vel.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt); // Retrieve quaternion vehicle attitude Quaternion attitude_vehicle_quat; _ahrs.get_quat_body_to_ned(attitude_vehicle_quat); // Update the unused targets attitude based on current attitude to condition mode change _attitude_target_quat = attitude_vehicle_quat * _attitude_ang_error; // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Convert body-frame angular velocity into euler angle derivative of desired attitude ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate); // Compute the angular velocity target from the integrated rate error _attitude_ang_error.to_axis_angle(attitude_error_vector); _rate_target_ang_vel = update_ang_vel_target_from_att_error(attitude_error_vector); _rate_target_ang_vel += _attitude_target_ang_vel; // ensure Quaternions stay normalized _attitude_ang_error.normalize(); } // Command an angular step (i.e change) in body frame angle // Used to command a step in angle without exciting the orthogonal axis during autotune void AC_AttitudeControl::input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd) { // Convert from centidegrees on public interface to radians float roll_step_rads = radians(roll_angle_step_bf_cd * 0.01f); float pitch_step_rads = radians(pitch_angle_step_bf_cd * 0.01f); float yaw_step_rads = radians(yaw_angle_step_bf_cd * 0.01f); // rotate attitude target by desired step Quaternion attitude_target_update_quat; attitude_target_update_quat.from_axis_angle(Vector3f(roll_step_rads, pitch_step_rads, yaw_step_rads)); _attitude_target_quat = _attitude_target_quat * attitude_target_update_quat; _attitude_target_quat.normalize(); // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); // Set rate feedforward requests to zero _attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f); _attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f); // Call quaternion attitude controller attitude_controller_run_quat(); } // Calculates the body frame angular velocities to follow the target attitude void AC_AttitudeControl::attitude_controller_run_quat() { // Retrieve quaternion vehicle attitude Quaternion attitude_vehicle_quat; _ahrs.get_quat_body_to_ned(attitude_vehicle_quat); // Compute attitude error Vector3f attitude_error_vector; thrust_heading_rotation_angles(_attitude_target_quat, attitude_vehicle_quat, attitude_error_vector, _thrust_error_angle); // Compute the angular velocity target from the attitude error _rate_target_ang_vel = update_ang_vel_target_from_att_error(attitude_error_vector); // Add feedforward term that attempts to ensure that roll and pitch errors rotate with the body frame rather than the reference frame. // todo: this should probably be a matrix that couples yaw as well. _rate_target_ang_vel.x += constrain_float(attitude_error_vector.y, -M_PI / 4, M_PI / 4) * _ahrs.get_gyro().z; _rate_target_ang_vel.y += -constrain_float(attitude_error_vector.x, -M_PI / 4, M_PI / 4) * _ahrs.get_gyro().z; ang_vel_limit(_rate_target_ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); // Add the angular velocity feedforward, rotated into vehicle frame Quaternion attitude_target_ang_vel_quat = Quaternion(0.0f, _attitude_target_ang_vel.x, _attitude_target_ang_vel.y, _attitude_target_ang_vel.z); Quaternion to_to_from_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat; Quaternion desired_ang_vel_quat = to_to_from_quat.inverse() * attitude_target_ang_vel_quat * to_to_from_quat; // Correct the thrust vector and smoothly add feedforward and yaw input _feedforward_scalar = 1.0f; if (_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE * 2.0f) { _rate_target_ang_vel.z = _ahrs.get_gyro().z; } else if (_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE) { _feedforward_scalar = (1.0f - (_thrust_error_angle - AC_ATTITUDE_THRUST_ERROR_ANGLE) / AC_ATTITUDE_THRUST_ERROR_ANGLE); _rate_target_ang_vel.x += desired_ang_vel_quat.q2 * _feedforward_scalar; _rate_target_ang_vel.y += desired_ang_vel_quat.q3 * _feedforward_scalar; _rate_target_ang_vel.z += desired_ang_vel_quat.q4; _rate_target_ang_vel.z = _ahrs.get_gyro().z * (1.0 - _feedforward_scalar) + _rate_target_ang_vel.z * _feedforward_scalar; } else { _rate_target_ang_vel.x += desired_ang_vel_quat.q2; _rate_target_ang_vel.y += desired_ang_vel_quat.q3; _rate_target_ang_vel.z += desired_ang_vel_quat.q4; } if (_rate_bf_ff_enabled) { // rotate target and normalize Quaternion attitude_target_update_quat; attitude_target_update_quat.from_axis_angle(Vector3f(_attitude_target_ang_vel.x * _dt, _attitude_target_ang_vel.y * _dt, _attitude_target_ang_vel.z * _dt)); _attitude_target_quat = _attitude_target_quat * attitude_target_update_quat; _attitude_target_quat.normalize(); } // ensure Quaternions stay normalized _attitude_target_quat.normalize(); // Record error to handle EKF resets _attitude_ang_error = attitude_vehicle_quat.inverse() * _attitude_target_quat; } // thrust_heading_rotation_angles - calculates two ordered rotations to move the att_from_quat quaternion to the att_to_quat quaternion. // The first rotation corrects the thrust vector and the second rotation corrects the heading vector. void AC_AttitudeControl::thrust_heading_rotation_angles(Quaternion& att_to_quat, const Quaternion& att_from_quat, Vector3f& att_diff_angle, float& thrust_vec_dot) { Matrix3f att_to_rot_matrix; // rotation from the target body frame to the inertial frame. att_to_quat.rotation_matrix(att_to_rot_matrix); Vector3f att_to_thrust_vec = att_to_rot_matrix * Vector3f(0.0f, 0.0f, 1.0f); Matrix3f att_from_rot_matrix; // rotation from the current body frame to the inertial frame. att_from_quat.rotation_matrix(att_from_rot_matrix); Vector3f att_from_thrust_vec = att_from_rot_matrix * Vector3f(0.0f, 0.0f, 1.0f); // the dot product is used to calculate the current lean angle for use of external functions _thrust_angle = acosf(constrain_float(Vector3f(0.0f,0.0f,1.0f) * att_from_thrust_vec,-1.0f,1.0f)); // the cross product of the desired and target thrust vector defines the rotation vector Vector3f thrust_vec_cross = att_from_thrust_vec % att_to_thrust_vec; // the dot product is used to calculate the angle between the target and desired thrust vectors thrust_vec_dot = acosf(constrain_float(att_from_thrust_vec * att_to_thrust_vec, -1.0f, 1.0f)); // Normalize the thrust rotation vector float thrust_vector_length = thrust_vec_cross.length(); if (is_zero(thrust_vector_length) || is_zero(thrust_vec_dot)) { thrust_vec_cross = Vector3f(0, 0, 1); thrust_vec_dot = 0.0f; } else { thrust_vec_cross /= thrust_vector_length; } Quaternion thrust_vec_correction_quat; thrust_vec_correction_quat.from_axis_angle(thrust_vec_cross, thrust_vec_dot); // Rotate thrust_vec_correction_quat to the att_from frame thrust_vec_correction_quat = att_from_quat.inverse() * thrust_vec_correction_quat * att_from_quat; // calculate the remaining rotation required after thrust vector is rotated transformed to the att_from frame Quaternion yaw_vec_correction_quat = thrust_vec_correction_quat.inverse() * att_from_quat.inverse() * att_to_quat; // calculate the angle error in x and y. Vector3f rotation; thrust_vec_correction_quat.to_axis_angle(rotation); att_diff_angle.x = rotation.x; att_diff_angle.y = rotation.y; // calculate the angle error in z (x and y should be zero here). yaw_vec_correction_quat.to_axis_angle(rotation); att_diff_angle.z = rotation.z; // Todo: Limit roll an pitch error based on output saturation and maximum error. // Limit Yaw Error based on maximum acceleration - Update to include output saturation and maximum error. // Currently the limit is based on the maximum acceleration using the linear part of the SQRT controller. // This should be updated to be based on an angle limit, saturation, or unlimited based on user defined parameters. if (!is_zero(_p_angle_yaw.kP()) && fabsf(att_diff_angle.z) > AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP()) { att_diff_angle.z = constrain_float(wrap_PI(att_diff_angle.z), -AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP(), AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS / _p_angle_yaw.kP()); yaw_vec_correction_quat.from_axis_angle(Vector3f(0.0f, 0.0f, att_diff_angle.z)); att_to_quat = att_from_quat * thrust_vec_correction_quat * yaw_vec_correction_quat; } } // calculates the velocity correction from an angle error. The angular velocity has acceleration and // deceleration limits including basic jerk limiting using _input_tc float AC_AttitudeControl::input_shaping_angle(float error_angle, float input_tc, float accel_max, float target_ang_vel, float dt) { // Calculate the velocity as error approaches zero with acceleration limited by accel_max_radss float desired_ang_vel = sqrt_controller(error_angle, 1.0f / MAX(input_tc, 0.01f), accel_max, dt); // Acceleration is limited directly to smooth the beginning of the curve. return input_shaping_ang_vel(target_ang_vel, desired_ang_vel, accel_max, dt); } // limits the acceleration and deceleration of a velocity request float AC_AttitudeControl::input_shaping_ang_vel(float target_ang_vel, float desired_ang_vel, float accel_max, float dt) { // Acceleration is limited directly to smooth the beginning of the curve. if (is_positive(accel_max)) { float delta_ang_vel = accel_max * dt; return constrain_float(desired_ang_vel, target_ang_vel - delta_ang_vel, target_ang_vel + delta_ang_vel); } else { return desired_ang_vel; } } // calculates the expected angular velocity correction from an angle error based on the AC_AttitudeControl settings. // This function can be used to predict the delay associated with angle requests. void AC_AttitudeControl::input_shaping_rate_predictor(const Vector2f &error_angle, Vector2f& target_ang_vel, float dt) const { if (_rate_bf_ff_enabled) { // translate the roll pitch and yaw acceleration limits to the euler axis target_ang_vel.x = input_shaping_angle(wrap_PI(error_angle.x), _input_tc, get_accel_roll_max_radss(), target_ang_vel.x, dt); target_ang_vel.y = input_shaping_angle(wrap_PI(error_angle.y), _input_tc, get_accel_pitch_max_radss(), target_ang_vel.y, dt); } else { target_ang_vel.x = _p_angle_roll.get_p(wrap_PI(error_angle.x)); target_ang_vel.y = _p_angle_pitch.get_p(wrap_PI(error_angle.y)); } // Limit the angular velocity correction Vector3f ang_vel(target_ang_vel.x, target_ang_vel.y, 0.0f); ang_vel_limit(ang_vel, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), 0.0f); target_ang_vel.x = ang_vel.x; target_ang_vel.y = ang_vel.y; } // limits angular velocity void AC_AttitudeControl::ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const { if (is_zero(ang_vel_roll_max) || is_zero(ang_vel_pitch_max)) { if (!is_zero(ang_vel_roll_max)) { euler_rad.x = constrain_float(euler_rad.x, -ang_vel_roll_max, ang_vel_roll_max); } if (!is_zero(ang_vel_pitch_max)) { euler_rad.y = constrain_float(euler_rad.y, -ang_vel_pitch_max, ang_vel_pitch_max); } } else { Vector2f thrust_vector_ang_vel(euler_rad.x / ang_vel_roll_max, euler_rad.y / ang_vel_pitch_max); float thrust_vector_length = thrust_vector_ang_vel.length(); if (thrust_vector_length > 1.0f) { euler_rad.x = thrust_vector_ang_vel.x * ang_vel_roll_max / thrust_vector_length; euler_rad.y = thrust_vector_ang_vel.y * ang_vel_pitch_max / thrust_vector_length; } } if (!is_zero(ang_vel_yaw_max)) { euler_rad.z = constrain_float(euler_rad.z, -ang_vel_yaw_max, ang_vel_yaw_max); } } // translates body frame acceleration limits to the euler axis Vector3f AC_AttitudeControl::euler_accel_limit(const Vector3f &euler_rad, const Vector3f &euler_accel) { float sin_phi = constrain_float(fabsf(sinf(euler_rad.x)), 0.1f, 1.0f); float cos_phi = constrain_float(fabsf(cosf(euler_rad.x)), 0.1f, 1.0f); float sin_theta = constrain_float(fabsf(sinf(euler_rad.y)), 0.1f, 1.0f); Vector3f rot_accel; if (is_zero(euler_accel.x) || is_zero(euler_accel.y) || is_zero(euler_accel.z) || is_negative(euler_accel.x) || is_negative(euler_accel.y) || is_negative(euler_accel.z)) { rot_accel.x = euler_accel.x; rot_accel.y = euler_accel.y; rot_accel.z = euler_accel.z; } else { rot_accel.x = euler_accel.x; rot_accel.y = MIN(euler_accel.y / cos_phi, euler_accel.z / sin_phi); rot_accel.z = MIN(MIN(euler_accel.x / sin_theta, euler_accel.y / sin_phi), euler_accel.z / cos_phi); } return rot_accel; } // Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading void AC_AttitudeControl::shift_ef_yaw_target(float yaw_shift_cd) { float yaw_shift = radians(yaw_shift_cd * 0.01f); Quaternion _attitude_target_update_quat; _attitude_target_update_quat.from_axis_angle(Vector3f(0.0f, 0.0f, yaw_shift)); _attitude_target_quat = _attitude_target_update_quat * _attitude_target_quat; } // Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading void AC_AttitudeControl::inertial_frame_reset() { // Retrieve quaternion vehicle attitude Quaternion attitude_vehicle_quat; _ahrs.get_quat_body_to_ned(attitude_vehicle_quat); // Recalculate the target quaternion _attitude_target_quat = attitude_vehicle_quat * _attitude_ang_error; // calculate the attitude target euler angles _attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z); } // Convert a 321-intrinsic euler angle derivative to an angular velocity vector void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z; ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z; ang_vel_rads.z = -sin_phi * euler_rate_rads.y + cos_theta * cos_phi * euler_rate_rads.z; } // Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Returns false if the vehicle is pitched 90 degrees up or down bool AC_AttitudeControl::ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); // When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false. if (is_zero(cos_theta)) { return false; } euler_rate_rads.x = ang_vel_rads.x + sin_phi * (sin_theta / cos_theta) * ang_vel_rads.y + cos_phi * (sin_theta / cos_theta) * ang_vel_rads.z; euler_rate_rads.y = cos_phi * ang_vel_rads.y - sin_phi * ang_vel_rads.z; euler_rate_rads.z = (sin_phi / cos_theta) * ang_vel_rads.y + (cos_phi / cos_theta) * ang_vel_rads.z; return true; } // Update rate_target_ang_vel using attitude_error_rot_vec_rad Vector3f AC_AttitudeControl::update_ang_vel_target_from_att_error(const Vector3f &attitude_error_rot_vec_rad) { Vector3f rate_target_ang_vel; // Compute the roll angular velocity demand from the roll angle error if (_use_sqrt_controller) { rate_target_ang_vel.x = sqrt_controller(attitude_error_rot_vec_rad.x, _p_angle_roll.kP(), constrain_float(get_accel_roll_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.x = _p_angle_roll.kP() * attitude_error_rot_vec_rad.x; } // todo: Add Angular Velocity Limit // Compute the pitch angular velocity demand from the pitch angle error if (_use_sqrt_controller) { rate_target_ang_vel.y = sqrt_controller(attitude_error_rot_vec_rad.y, _p_angle_pitch.kP(), constrain_float(get_accel_pitch_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.y = _p_angle_pitch.kP() * attitude_error_rot_vec_rad.y; } // todo: Add Angular Velocity Limit // Compute the yaw angular velocity demand from the yaw angle error if (_use_sqrt_controller) { rate_target_ang_vel.z = sqrt_controller(attitude_error_rot_vec_rad.z, _p_angle_yaw.kP(), constrain_float(get_accel_yaw_max_radss() / 2.0f, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS), _dt); } else { rate_target_ang_vel.z = _p_angle_yaw.kP() * attitude_error_rot_vec_rad.z; } // todo: Add Angular Velocity Limit return rate_target_ang_vel; } // Enable or disable body-frame feed forward void AC_AttitudeControl::accel_limiting(bool enable_limits) { if (enable_limits) { // If enabling limits, reload from eeprom or set to defaults if (is_zero(_accel_roll_max)) { _accel_roll_max.load(); } if (is_zero(_accel_pitch_max)) { _accel_pitch_max.load(); } if (is_zero(_accel_yaw_max)) { _accel_yaw_max.load(); } } else { _accel_roll_max = 0.0f; _accel_pitch_max = 0.0f; _accel_yaw_max = 0.0f; } } // Return tilt angle limit for pilot input that prioritises altitude hold over lean angle float AC_AttitudeControl::get_althold_lean_angle_max() const { // convert to centi-degrees for public interface return MAX(ToDeg(_althold_lean_angle_max), AC_ATTITUDE_CONTROL_ANGLE_LIMIT_MIN) * 100.0f; } // Proportional controller with piecewise sqrt sections to constrain second derivative float AC_AttitudeControl::sqrt_controller(float error, float p, float second_ord_lim, float dt) { float correction_rate; if (is_negative(second_ord_lim) || is_zero(second_ord_lim)) { // second order limit is zero or negative. correction_rate = error * p; } else if (is_zero(p)) { // P term is zero but we have a second order limit. if (is_positive(error)) { correction_rate = safe_sqrt(2.0f * second_ord_lim * (error)); } else if (is_negative(error)) { correction_rate = -safe_sqrt(2.0f * second_ord_lim * (-error)); } else { correction_rate = 0.0f; } } else { // Both the P and second order limit have been defined. float linear_dist = second_ord_lim / sq(p); if (error > linear_dist) { correction_rate = safe_sqrt(2.0f * second_ord_lim * (error - (linear_dist / 2.0f))); } else if (error < -linear_dist) { correction_rate = -safe_sqrt(2.0f * second_ord_lim * (-error - (linear_dist / 2.0f))); } else { correction_rate = error * p; } } if (!is_zero(dt)) { // this ensures we do not get small oscillations by over shooting the error correction in the last time step. return constrain_float(correction_rate, -fabsf(error) / dt, fabsf(error) / dt); } else { return correction_rate; } } // Inverse proportional controller with piecewise sqrt sections to constrain second derivative float AC_AttitudeControl::stopping_point(float first_ord_mag, float p, float second_ord_lim) { if (is_positive(second_ord_lim) && !is_zero(second_ord_lim) && is_zero(p)) { return (first_ord_mag * first_ord_mag) / (2.0f * second_ord_lim); } else if ((is_negative(second_ord_lim) || is_zero(second_ord_lim)) && !is_zero(p)) { return first_ord_mag / p; } else if ((is_negative(second_ord_lim) || is_zero(second_ord_lim)) && is_zero(p)) { return 0.0f; } // calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function float linear_velocity = second_ord_lim / p; if (fabsf(first_ord_mag) < linear_velocity) { // if our current velocity is below the cross-over point we use a linear function return first_ord_mag / p; } else { float linear_dist = second_ord_lim / sq(p); float overshoot = (linear_dist * 0.5f) + sq(first_ord_mag) / (2.0f * second_ord_lim); if (is_positive(first_ord_mag)) { return overshoot; } else { return -overshoot; } } } // Return roll rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_roll() { float alpha = MIN(get_rate_roll_pid().get_filt_E_alpha(), get_rate_roll_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_roll_pid().kD()) / _dt + get_rate_roll_pid().kP()); } // Return pitch rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_pitch() { float alpha = MIN(get_rate_pitch_pid().get_filt_E_alpha(), get_rate_pitch_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_pitch_pid().kD()) / _dt + get_rate_pitch_pid().kP()); } // Return yaw rate step size in centidegrees/s that results in maximum output after 4 time steps float AC_AttitudeControl::max_rate_step_bf_yaw() { float alpha = MIN(get_rate_yaw_pid().get_filt_E_alpha(), get_rate_yaw_pid().get_filt_D_alpha()); float alpha_remaining = 1 - alpha; // todo: When a thrust_max is available we should replace 0.5f with 0.5f * _motors.thrust_max float throttle_hover = constrain_float(_motors.get_throttle_hover(), 0.1f, 0.5f); return 2.0f * throttle_hover * AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX / ((alpha_remaining * alpha_remaining * alpha_remaining * alpha * get_rate_yaw_pid().kD()) / _dt + get_rate_yaw_pid().kP()); } bool AC_AttitudeControl::pre_arm_checks(const char *param_prefix, char *failure_msg, const uint8_t failure_msg_len) { // validate AC_P members: const struct { const char *pid_name; AC_P &p; } ps[] = { { "ANG_PIT", get_angle_pitch_p() }, { "ANG_RLL", get_angle_roll_p() }, { "ANG_YAW", get_angle_yaw_p() } }; for (uint8_t i=0; isnprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name); return false; } } // validate AC_PID members: const struct { const char *pid_name; AC_PID &pid; } pids[] = { { "RAT_RLL", get_rate_roll_pid() }, { "RAT_PIT", get_rate_pitch_pid() }, { "RAT_YAW", get_rate_yaw_pid() }, }; for (uint8_t i=0; isnprintf(failure_msg, failure_msg_len, "%s_%s_P must be >= 0", param_prefix, pid_name); return false; } if (is_negative(pid.kI())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_I must be >= 0", param_prefix, pid_name); return false; } } else { // kP and kI must be positive: if (!is_positive(pid.kP())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, pid_name); return false; } if (!is_positive(pid.kI())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_I must be > 0", param_prefix, pid_name); return false; } } // never allow a negative D term (but zero is allowed) if (is_negative(pid.kD())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_D must be >= 0", param_prefix, pid_name); return false; } } return true; }