// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include "AC_AttitudeControl_Heli.h" #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = { // parameters from parent vehicle AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), // @Param: PIRO_COMP // @DisplayName: Piro Comp Enable // @Description: Pirouette compensation enabled // @Range: 0:Disabled 1:Enabled // @User: Advanced AP_GROUPINFO("PIRO_COMP", 0, AC_AttitudeControl_Heli, _piro_comp_enabled, 0), // @Param: HOVR_ROL_TRM // @DisplayName: Hover Roll Trim // @Description: Trim the hover roll angle to counter tail rotor thrust in a hover // @Units: Centi-Degrees // @Range: 0 1000 // @User: Advanced AP_GROUPINFO("HOVR_ROL_TRM", 1, AC_AttitudeControl_Heli, _hover_roll_trim, AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output // @Range: 0.08 0.35 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 0.6 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.001 0.03 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FILT // @DisplayName: Roll axis rate conroller input frequency in Hz // @Description: Roll axis rate conroller input frequency in Hz // @Units: Hz // @Range: 1 20 // @Increment: 1 AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 2, AC_AttitudeControl_Heli, AC_HELI_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output // @Range: 0.08 0.35 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 0.6 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.001 0.03 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FILT // @DisplayName: Pitch axis rate conroller input frequency in Hz // @Description: Pitch axis rate conroller input frequency in Hz // @Units: Hz // @Range: 1 20 // @Increment: 1 AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 3, AC_AttitudeControl_Heli, AC_HELI_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output // @Range: 0.180 0.60 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.01 0.06 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FILT // @DisplayName: Yaw axis rate conroller input frequency in Hz // @Description: Yaw axis rate conroller input frequency in Hz // @Units: Hz // @Range: 1 20 // @Increment: 1 AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 4, AC_AttitudeControl_Heli, AC_HELI_PID), AP_GROUPEND }; // passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds) { // convert from centidegrees on public interface to radians float yaw_rate_bf_rads = radians(yaw_rate_bf_cds*0.01f); // store roll, pitch and passthroughs // NOTE: this abuses yaw_rate_bf_rads _passthrough_roll = roll_passthrough; _passthrough_pitch = pitch_passthrough; _passthrough_yaw = degrees(yaw_rate_bf_rads)*100.0f; // set rate controller to use pass through _flags_heli.flybar_passthrough = true; // set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro) _att_target_ang_vel_rads.x = _ahrs.get_gyro().x; _att_target_ang_vel_rads.y = _ahrs.get_gyro().y; // accel limit desired yaw rate if (get_accel_yaw_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; float rate_change_rads = yaw_rate_bf_rads - _att_target_ang_vel_rads.z; rate_change_rads = constrain_float(rate_change_rads, -rate_change_limit_rads, rate_change_limit_rads); _att_target_ang_vel_rads.z += rate_change_rads; } else { _att_target_ang_vel_rads.z = yaw_rate_bf_rads; } integrate_bf_rate_error_to_angle_errors(); _att_error_rot_vec_rad.x = 0; _att_error_rot_vec_rad.y = 0; // update our earth-frame angle targets Vector3f att_error_euler_rad; // convert angle error rotation vector into 321-intrinsic euler angle difference // NOTE: this results an an approximation linearized about the vehicle's attitude if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) { _att_target_euler_rad.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll); _att_target_euler_rad.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch); _att_target_euler_rad.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw); } // handle flipping over pitch axis if (_att_target_euler_rad.y > M_PI/2.0f) { _att_target_euler_rad.x = wrap_PI(_att_target_euler_rad.x + M_PI); _att_target_euler_rad.y = wrap_PI(M_PI - _att_target_euler_rad.x); _att_target_euler_rad.z = wrap_2PI(_att_target_euler_rad.z + M_PI); } if (_att_target_euler_rad.y < -M_PI/2.0f) { _att_target_euler_rad.x = wrap_PI(_att_target_euler_rad.x + M_PI); _att_target_euler_rad.y = wrap_PI(-M_PI - _att_target_euler_rad.x); _att_target_euler_rad.z = wrap_2PI(_att_target_euler_rad.z + M_PI); } // convert body-frame angle errors to body-frame rate targets update_ang_vel_target_from_att_error(); // set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates _ang_vel_target_rads.x = _att_target_ang_vel_rads.x; _ang_vel_target_rads.y = _att_target_ang_vel_rads.y; // add desired target to yaw _ang_vel_target_rads.z += _att_target_ang_vel_rads.z; } // subclass non-passthrough too, for external gyro, no flybar void AC_AttitudeControl_Heli::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { _passthrough_yaw = yaw_rate_bf_cds; AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); } // // rate controller (body-frame) methods // // rate_controller_run - run lowest level rate controller and send outputs to the motors // should be called at 100hz or more void AC_AttitudeControl_Heli::rate_controller_run() { // call rate controllers and send output to motors object // if using a flybar passthrough roll and pitch directly to motors if (_flags_heli.flybar_passthrough) { _motors.set_roll(_passthrough_roll/4500.0f); _motors.set_pitch(_passthrough_pitch/4500.0f); } else { rate_bf_to_motor_roll_pitch(_ang_vel_target_rads.x, _ang_vel_target_rads.y); } if (_flags_heli.tail_passthrough) { _motors.set_yaw(_passthrough_yaw/4500.0f); } else { _motors.set_yaw(rate_bf_to_motor_yaw(_ang_vel_target_rads.z)); } } // get lean angle max for pilot input that prioritises altitude hold over lean angle float AC_AttitudeControl_Heli::get_althold_lean_angle_max() const { // calc maximum tilt angle based on throttle float ret = acosf(constrain_float(_throttle_in_filt.get()/0.9f, 0.0f, 1.0f)); // TEMP: convert to centi-degrees for public interface return degrees(ret) * 100.0f; } // // private methods // // // body-frame rate controller // // rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(float rate_roll_target_rads, float rate_pitch_target_rads) { float roll_pd, roll_i, roll_ff; // used to capture pid values float pitch_pd, pitch_i, pitch_ff; // used to capture pid values float rate_roll_error_rads, rate_pitch_error_rads; // simply target_rate - current_rate float roll_out, pitch_out; const Vector3f& gyro = _ahrs.get_gyro(); // get current rates // calculate error rate_roll_error_rads = rate_roll_target_rads - gyro.x; rate_pitch_error_rads = rate_pitch_target_rads - gyro.y; // pass error to PID controller _pid_rate_roll.set_input_filter_all(rate_roll_error_rads); _pid_rate_roll.set_desired_rate(rate_roll_target_rads); _pid_rate_pitch.set_input_filter_all(rate_pitch_error_rads); _pid_rate_pitch.set_desired_rate(rate_pitch_target_rads); // call p and d controllers roll_pd = _pid_rate_roll.get_p() + _pid_rate_roll.get_d(); pitch_pd = _pid_rate_pitch.get_p() + _pid_rate_pitch.get_d(); // get roll i term roll_i = _pid_rate_roll.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_roll || ((roll_i>0&&rate_roll_error_rads<0)||(roll_i<0&&rate_roll_error_rads>0))){ if (_flags_heli.leaky_i){ roll_i = _pid_rate_roll.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); }else{ roll_i = _pid_rate_roll.get_i(); } } // get pitch i term pitch_i = _pid_rate_pitch.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_pitch || ((pitch_i>0&&rate_pitch_error_rads<0)||(pitch_i<0&&rate_pitch_error_rads>0))){ if (_flags_heli.leaky_i) { pitch_i = _pid_rate_pitch.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); }else{ pitch_i = _pid_rate_pitch.get_i(); } } // For legacy reasons, we convert to centi-degrees before inputting to the feedforward roll_ff = roll_feedforward_filter.apply(_pid_rate_roll.get_vff(rate_roll_target_rads), _dt); pitch_ff = pitch_feedforward_filter.apply(_pid_rate_pitch.get_vff(rate_pitch_target_rads), _dt); // add feed forward and final output roll_out = roll_pd + roll_i + roll_ff; pitch_out = pitch_pd + pitch_i + pitch_ff; // constrain output and update limit flags if (fabsf(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { roll_out = constrain_float(roll_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_roll = true; }else{ _flags_heli.limit_roll = false; } if (fabsf(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { pitch_out = constrain_float(pitch_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_pitch = true; }else{ _flags_heli.limit_pitch = false; } // output to motors _motors.set_roll(roll_out); _motors.set_pitch(pitch_out); // Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the // helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability // as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs. // It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption. if (_piro_comp_enabled){ int32_t piro_roll_i, piro_pitch_i; // used to hold I-terms while doing piro comp piro_roll_i = roll_i; piro_pitch_i = pitch_i; Vector2f yawratevector; yawratevector.x = cosf(-_ahrs.get_gyro().z * _dt); yawratevector.y = sinf(-_ahrs.get_gyro().z * _dt); yawratevector.normalize(); roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y; pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y; _pid_rate_pitch.set_integrator(pitch_i); _pid_rate_roll.set_integrator(roll_i); } } // rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second float AC_AttitudeControl_Heli::rate_bf_to_motor_yaw(float rate_target_rads) { float pd,i,vff,aff; // used to capture pid values for logging float current_rate_rads; // this iteration's rate float rate_error_rads; // simply target_rate - current_rate float yaw_out; // get current rate // To-Do: make getting gyro rates more efficient? current_rate_rads = _ahrs.get_gyro().z; // calculate error and call pid controller rate_error_rads = rate_target_rads - current_rate_rads; // pass error to PID controller _pid_rate_yaw.set_input_filter_all(rate_error_rads); _pid_rate_yaw.set_desired_rate(rate_target_rads); // get p and d pd = _pid_rate_yaw.get_p() + _pid_rate_yaw.get_d(); // get i term i = _pid_rate_yaw.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_yaw || ((i>0&&rate_error_rads<0)||(i<0&&rate_error_rads>0))) { if (((AP_MotorsHeli&)_motors).rotor_runup_complete()) { i = _pid_rate_yaw.get_i(); } else { i = ((AC_HELI_PID&)_pid_rate_yaw).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up } } // For legacy reasons, we convert to centi-degrees before inputting to the feedforward vff = yaw_velocity_feedforward_filter.apply(_pid_rate_yaw.get_vff(rate_target_rads), _dt); aff = yaw_acceleration_feedforward_filter.apply(_pid_rate_yaw.get_aff(rate_target_rads), _dt); // add feed forward yaw_out = pd + i + vff + aff; // constrain output and update limit flag if (fabsf(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) { yaw_out = constrain_float(yaw_out,-AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); _flags_heli.limit_yaw = true; }else{ _flags_heli.limit_yaw = false; } // output to motors return yaw_out; } // // throttle functions // // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 float AC_AttitudeControl_Heli::get_boosted_throttle(float throttle_in) { // no angle boost for trad helis _angle_boost = 0.0f; return throttle_in; }