/* * vector3.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #pragma GCC optimize("O2") #include "AP_Math.h" template T Vector2::length_squared() const { return (T)(x*x + y*y); } template T Vector2::length(void) const { return norm(x, y); } // limit vector to a given length. returns true if vector was limited template bool Vector2::limit_length(T max_length) { const T len = length(); if ((len > max_length) && is_positive(len)) { x *= (max_length / len); y *= (max_length / len); return true; } return false; } // dot product template T Vector2::operator *(const Vector2 &v) const { return x*v.x + y*v.y; } // cross product template T Vector2::operator %(const Vector2 &v) const { return x*v.y - y*v.x; } template Vector2 &Vector2::operator *=(const T num) { x*=num; y*=num; return *this; } template Vector2 &Vector2::operator /=(const T num) { x /= num; y /= num; return *this; } template Vector2 &Vector2::operator -=(const Vector2 &v) { x -= v.x; y -= v.y; return *this; } template bool Vector2::is_nan(void) const { return isnan(x) || isnan(y); } template bool Vector2::is_inf(void) const { return isinf(x) || isinf(y); } template Vector2 &Vector2::operator +=(const Vector2 &v) { x+=v.x; y+=v.y; return *this; } template Vector2 Vector2::operator /(const T num) const { return Vector2(x/num, y/num); } template Vector2 Vector2::operator *(const T num) const { return Vector2(x*num, y*num); } template Vector2 Vector2::operator -(const Vector2 &v) const { return Vector2(x-v.x, y-v.y); } template Vector2 Vector2::operator +(const Vector2 &v) const { return Vector2(x+v.x, y+v.y); } template Vector2 Vector2::operator -(void) const { return Vector2(-x,-y); } template bool Vector2::operator ==(const Vector2 &v) const { return (is_equal(x,v.x) && is_equal(y,v.y)); } template bool Vector2::operator !=(const Vector2 &v) const { return (!is_equal(x,v.x) || !is_equal(y,v.y)); } template T Vector2::angle(const Vector2 &v2) const { const T len = this->length() * v2.length(); if (len <= 0) { return 0.0f; } const T cosv = ((*this)*v2) / len; if (cosv >= 1) { return 0.0f; } if (cosv <= -1) { return M_PI; } return acosF(cosv); } template T Vector2::angle(void) const { return M_PI_2 + atan2f(-x, y); } // find the intersection between two line segments // returns true if they intersect, false if they do not // the point of intersection is returned in the intersection argument template bool Vector2::segment_intersection(const Vector2& seg1_start, const Vector2& seg1_end, const Vector2& seg2_start, const Vector2& seg2_end, Vector2& intersection) { // implementation borrowed from http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect const Vector2 r1 = seg1_end - seg1_start; const Vector2 r2 = seg2_end - seg2_start; const Vector2 ss2_ss1 = seg2_start - seg1_start; const T r1xr2 = r1 % r2; const T q_pxr = ss2_ss1 % r1; if (fabsf(r1xr2) < FLT_EPSILON) { // either collinear or parallel and non-intersecting return false; } else { // t = (q - p) * s / (r * s) // u = (q - p) * r / (r * s) const T t = (ss2_ss1 % r2) / r1xr2; const T u = q_pxr / r1xr2; if ((u >= 0) && (u <= 1) && (t >= 0) && (t <= 1)) { // lines intersect // t can be any non-negative value because (p, p + r) is a ray // u must be between 0 and 1 because (q, q + s) is a line segment intersection = seg1_start + (r1*t); return true; } else { // non-parallel and non-intersecting return false; } } } // find the intersection between a line segment and a circle // returns true if they intersect and intersection argument is updated with intersection closest to seg_start // solution adapted from http://stackoverflow.com/questions/1073336/circle-line-segment-collision-detection-algorithm template bool Vector2::circle_segment_intersection(const Vector2& seg_start, const Vector2& seg_end, const Vector2& circle_center, T radius, Vector2& intersection) { // calculate segment start and end as offsets from circle's center const Vector2 seg_start_local = seg_start - circle_center; // calculate vector from start to end const Vector2 seg_end_minus_start = seg_end - seg_start; const T a = sq(seg_end_minus_start.x) + sq(seg_end_minus_start.y); const T b = 2 * ((seg_end_minus_start.x * seg_start_local.x) + (seg_end_minus_start.y * seg_start_local.y)); const T c = sq(seg_start_local.x) + sq(seg_start_local.y) - sq(radius); // check for invalid data if (::is_zero(a) || isnan(a) || isnan(b) || isnan(c)) { return false; } const T delta = sq(b) - (4.0f * a * c); if (isnan(delta)) { return false; } // check for invalid delta (i.e. discriminant) if (delta < 0.0f) { return false; } const T delta_sqrt = sqrtF(delta); const T t1 = (-b + delta_sqrt) / (2.0f * a); const T t2 = (-b - delta_sqrt) / (2.0f * a); // Three hit cases: // -o-> --|--> | | --|-> // Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit), // Three miss cases: // -> o o -> | -> | // FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1) // intersection = new Vector3(E.x + t1 * d.x, secondPoint.y, E.y + t1 * d.y); // intersection.x = seg_start.x + t1 * seg_end_minus_start.x; // intersection.y = seg_start.y + t1 * seg_end_minus_start.y; if ((t1 >= 0.0f) && (t1 <= 1.0f)) { // t1 is the intersection, and it is closer than t2 (since t1 uses -b - discriminant) // Impale, Poke intersection = seg_start + (seg_end_minus_start * t1); return true; } // here t1 did not intersect so we are either started inside the sphere or completely past it if ((t2 >= 0.0f) && (t2 <= 1.0f)) { // ExitWound intersection = seg_start + (seg_end_minus_start * t2); return true; } // no intersection: FallShort, Past or CompletelyInside return false; } // normalizes this vector template void Vector2::normalize() { *this /= length(); } // returns the normalized vector template Vector2 Vector2::normalized() const { return *this/length(); } // reflects this vector about n template void Vector2::reflect(const Vector2 &n) { const Vector2 orig(*this); project(n); *this = *this*2 - orig; } // projects this vector onto v template void Vector2::project(const Vector2 &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v template Vector2 Vector2::projected(const Vector2 &v) { return v * (*this * v)/(v*v); } // extrapolate position given bearing (in degrees) and distance template void Vector2::offset_bearing(T bearing, T distance) { x += cosF(radians(bearing)) * distance; y += sinF(radians(bearing)) * distance; } // given a position pos_delta and a velocity v1 produce a vector // perpendicular to v1 maximising distance from p1 template Vector2 Vector2::perpendicular(const Vector2 &pos_delta, const Vector2 &v1) { const Vector2 perpendicular1 = Vector2(-v1[1], v1[0]); const Vector2 perpendicular2 = Vector2(v1[1], -v1[0]); const T d1 = perpendicular1 * pos_delta; const T d2 = perpendicular2 * pos_delta; if (d1 > d2) { return perpendicular1; } return perpendicular2; } /* * Returns the point closest to p on the line segment (v,w). * * Comments and implementation taken from * http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment */ template Vector2 Vector2::closest_point(const Vector2 &p, const Vector2 &v, const Vector2 &w) { // length squared of line segment const T l2 = (v - w).length_squared(); if (l2 < FLT_EPSILON) { // v == w case return v; } // Consider the line extending the segment, parameterized as v + t (w - v). // We find projection of point p onto the line. // It falls where t = [(p-v) . (w-v)] / |w-v|^2 // We clamp t from [0,1] to handle points outside the segment vw. const T t = ((p - v) * (w - v)) / l2; if (t <= 0) { return v; } else if (t >= 1) { return w; } else { return v + (w - v)*t; } } /* * Returns the point closest to p on the line segment (0,w). * * this is a simplification of closest point with a general segment, with v=(0,0) */ template Vector2 Vector2::closest_point(const Vector2 &p, const Vector2 &w) { // length squared of line segment const T l2 = w.length_squared(); if (l2 < FLT_EPSILON) { // v == w case return w; } const T t = (p * w) / l2; if (t <= 0) { return Vector2(0,0); } else if (t >= 1) { return w; } else { return w*t; } } // closest distance between a line segment and a point // https://stackoverflow.com/questions/2824478/shortest-distance-between-two-line-segments template T Vector2::closest_distance_between_line_and_point_squared(const Vector2 &w1, const Vector2 &w2, const Vector2 &p) { return closest_distance_between_radial_and_point_squared(w2-w1, p-w1); } // w1 and w2 define a line segment // p is a point // returns the closest distance between the line segment and the point template T Vector2::closest_distance_between_line_and_point(const Vector2 &w1, const Vector2 &w2, const Vector2 &p) { return sqrtF(closest_distance_between_line_and_point_squared(w1, w2, p)); } // a1->a2 and b2->v2 define two line segments // returns the square of the closest distance between the two line segments // see https://stackoverflow.com/questions/2824478/shortest-distance-between-two-line-segments template T Vector2::closest_distance_between_lines_squared(const Vector2 &a1, const Vector2 &a2, const Vector2 &b1, const Vector2 &b2) { const T dist1 = Vector2::closest_distance_between_line_and_point_squared(b1,b2,a1); const T dist2 = Vector2::closest_distance_between_line_and_point_squared(b1,b2,a2); const T dist3 = Vector2::closest_distance_between_line_and_point_squared(a1,a2,b1); const T dist4 = Vector2::closest_distance_between_line_and_point_squared(a1,a2,b2); const T m1 = MIN(dist1,dist2); const T m2 = MIN(dist3,dist4); return MIN(m1,m2); } // w defines a line segment from the origin // p is a point // returns the square of the closest distance between the radial and the point template T Vector2::closest_distance_between_radial_and_point_squared(const Vector2 &w, const Vector2 &p) { const Vector2 closest = closest_point(p, w); return (closest - p).length_squared(); } // w defines a line segment from the origin // p is a point // returns the closest distance between the radial and the point template T Vector2::closest_distance_between_radial_and_point(const Vector2 &w, const Vector2 &p) { return sqrtF(closest_distance_between_radial_and_point_squared(w,p)); } // rotate vector by angle in radians template void Vector2::rotate(T angle_rad) { const T cs = cosF(angle_rad); const T sn = sinF(angle_rad); T rx = x * cs - y * sn; T ry = x * sn + y * cs; x = rx; y = ry; } // define for float and double template class Vector2; template class Vector2; // define some ops for int and long template bool Vector2::operator ==(const Vector2 &v) const; template bool Vector2::operator !=(const Vector2 &v) const; template bool Vector2::operator ==(const Vector2 &v) const; template bool Vector2::operator !=(const Vector2 &v) const;