/// @file AC_PID_2D.cpp /// @brief Generic PID algorithm #include #include "AC_PID_2D.h" #define AC_PID_2D_FILT_E_HZ_DEFAULT 20.0f // default input filter frequency #define AC_PID_2D_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency #define AC_PID_2D_FILT_D_HZ_MIN 0.005f // minimum input filter frequency const AP_Param::GroupInfo AC_PID_2D::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID_2D, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID_2D, _ki, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 2, AC_PID_2D, _kimax, 0), // @Param: FLTE // @DisplayName: PID Input filter frequency in Hz // @Description: Input filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTE", 3, AC_PID_2D, _filt_E_hz, AC_PID_2D_FILT_E_HZ_DEFAULT), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 4, AC_PID_2D, _kd, 0), // @Param: FLTD // @DisplayName: D term filter frequency in Hz // @Description: D term filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTD", 5, AC_PID_2D, _filt_D_hz, AC_PID_2D_FILT_D_HZ_DEFAULT), // @Param: FF // @DisplayName: PID Feed Forward Gain // @Description: FF Gain which produces an output that is proportional to the magnitude of the target AP_GROUPINFO("FF", 6, AC_PID_2D, _kff, 0), AP_GROUPEND }; // Constructor AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz) { // load parameter values from eeprom AP_Param::setup_object_defaults(this, var_info); _kp.set_and_default(initial_kP); _ki.set_and_default(initial_kI); _kd.set_and_default(initial_kD); _kff.set_and_default(initial_kFF); _kimax.set_and_default(initial_imax); _filt_E_hz.set_and_default(initial_filt_E_hz); _filt_D_hz.set_and_default(initial_filt_D_hz); // reset input filter to first value received _reset_filter = true; } // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated if it does not increase in the direction of the limit vector Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit) { // don't process inf or NaN if (target.is_nan() || target.is_inf() || measurement.is_nan() || measurement.is_inf()) { return Vector2f{}; } _target = target; // reset input filter to value received if (_reset_filter) { _reset_filter = false; _error = _target - measurement; _derivative.zero(); } else { Vector2f error_last{_error}; _error += ((_target - measurement) - _error) * get_filt_E_alpha(dt); // calculate and filter derivative if (is_positive(dt)) { const Vector2f derivative{(_error - error_last) / dt}; _derivative += (derivative - _derivative) * get_filt_D_alpha(dt); } } // update I term update_i(dt, limit); _pid_info_x.target = _target.x; _pid_info_x.actual = measurement.x; _pid_info_x.error = _error.x; _pid_info_x.P = _error.x * _kp; _pid_info_x.I = _integrator.x; _pid_info_x.D = _derivative.x * _kd; _pid_info_x.FF = _target.x * _kff; _pid_info_y.target = _target.y; _pid_info_y.actual = measurement.y; _pid_info_y.error = _error.y; _pid_info_y.P = _error.y * _kp; _pid_info_y.I = _integrator.y; _pid_info_y.D = _derivative.y * _kd; _pid_info_y.FF = _target.y * _kff; return _error * _kp + _integrator + _derivative * _kd + _target * _kff; } Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit) { return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, dt, Vector2f{limit.x, limit.y}); } // update_i - update the integral // If the limit is set the integral is only allowed to reduce in the direction of the limit void AC_PID_2D::update_i(float dt, const Vector2f &limit) { _pid_info_x.limit = false; _pid_info_y.limit = false; Vector2f delta_integrator = (_error * _ki) * dt; float integrator_length = _integrator.length(); _integrator += delta_integrator; // do not let integrator increase in length if delta_integrator is in the direction of limit if (is_positive(delta_integrator * limit) && _integrator.limit_length(integrator_length)) { _pid_info_x.limit = true; _pid_info_y.limit = true; } _integrator.limit_length(_kimax); } Vector2f AC_PID_2D::get_p() const { return _error * _kp; } const Vector2f& AC_PID_2D::get_i() const { return _integrator; } Vector2f AC_PID_2D::get_d() const { return _derivative * _kd; } Vector2f AC_PID_2D::get_ff() { _pid_info_x.FF = _target.x * _kff; _pid_info_y.FF = _target.y * _kff; return _target * _kff; } void AC_PID_2D::reset_I() { _integrator.zero(); _pid_info_x.I = 0.0; _pid_info_y.I = 0.0; } // save_gains - save gains to eeprom void AC_PID_2D::save_gains() { _kp.save(); _ki.save(); _kd.save(); _kff.save(); _kimax.save(); _filt_E_hz.save(); _filt_D_hz.save(); } // get the target filter alpha float AC_PID_2D::get_filt_E_alpha(float dt) const { return calc_lowpass_alpha_dt(dt, _filt_E_hz); } // get the derivative filter alpha float AC_PID_2D::get_filt_D_alpha(float dt) const { return calc_lowpass_alpha_dt(dt, _filt_D_hz); } void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i) { set_integrator(target - measurement, i); } void AC_PID_2D::set_integrator(const Vector2f& error, const Vector2f& i) { set_integrator(i - error * _kp); } void AC_PID_2D::set_integrator(const Vector2f& i) { _integrator = i; _integrator.limit_length(_kimax); }