/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Compass_DroneCAN.h" #if AP_COMPASS_DRONECAN_ENABLED #include #include #include #include #include extern const AP_HAL::HAL& hal; #define LOG_TAG "COMPASS" AP_Compass_DroneCAN::DetectedModules AP_Compass_DroneCAN::_detected_modules[]; HAL_Semaphore AP_Compass_DroneCAN::_sem_registry; AP_Compass_DroneCAN::AP_Compass_DroneCAN(AP_DroneCAN* ap_dronecan, uint8_t node_id, uint8_t sensor_id, uint32_t devid) : _ap_dronecan(ap_dronecan) , _node_id(node_id) , _sensor_id(sensor_id) , _devid(devid) { } void AP_Compass_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan) { if (ap_dronecan == nullptr) { return; } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_magnetic_field, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("mag_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_magnetic_field_2, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("mag2_sub"); } } AP_Compass_Backend* AP_Compass_DroneCAN::probe(uint8_t index) { AP_Compass_DroneCAN* driver = nullptr; if (!_detected_modules[index].driver && _detected_modules[index].ap_dronecan) { WITH_SEMAPHORE(_sem_registry); // Register new Compass mode to a backend driver = new AP_Compass_DroneCAN(_detected_modules[index].ap_dronecan, _detected_modules[index].node_id, _detected_modules[index].sensor_id, _detected_modules[index].devid); if (driver) { if (!driver->init()) { delete driver; return nullptr; } _detected_modules[index].driver = driver; AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "Found Mag Node %d on Bus %d Sensor ID %d\n", _detected_modules[index].node_id, _detected_modules[index].ap_dronecan->get_driver_index(), _detected_modules[index].sensor_id); #if AP_TEST_DRONECAN_DRIVERS // Scroll through the registered compasses, and set the offsets if (driver->_compass.get_offsets(index).is_zero()) { driver->_compass.set_offsets(index, AP::sitl()->mag_ofs[index]); } // we want to simulate a calibrated compass by default, so set // scale to 1 AP_Param::set_default_by_name("COMPASS_SCALE", 1); AP_Param::set_default_by_name("COMPASS_SCALE2", 1); AP_Param::set_default_by_name("COMPASS_SCALE3", 1); driver->save_dev_id(index); driver->set_rotation(index, ROTATION_NONE); // make first compass external driver->set_external(index, true); #endif } } return driver; } bool AP_Compass_DroneCAN::init() { // Adding 1 is necessary to allow backward compatibilty, where this field was set as 1 by default if (!register_compass(_devid, _instance)) { return false; } set_dev_id(_instance, _devid); set_external(_instance, true); AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "AP_Compass_DroneCAN loaded\n\r"); return true; } AP_Compass_DroneCAN* AP_Compass_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id, uint8_t sensor_id) { if (ap_dronecan == nullptr) { return nullptr; } for (uint8_t i=0; iget_driver_index(), node_id, sensor_id + 1); // we use sensor_id as devtype break; } } } struct DetectedModules tempslot; // Sort based on the node_id, larger values first // we do this, so that we have repeatable compass // registration, especially in cases of extraneous // CAN compass is connected. for (uint8_t i = 1; i < COMPASS_MAX_BACKEND; i++) { for (uint8_t j = i; j > 0; j--) { if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) { tempslot = _detected_modules[j]; _detected_modules[j] = _detected_modules[j-1]; _detected_modules[j-1] = tempslot; } } } return nullptr; } void AP_Compass_DroneCAN::handle_mag_msg(const Vector3f &mag) { Vector3f raw_field = mag * 1000.0; accumulate_sample(raw_field, _instance); } void AP_Compass_DroneCAN::handle_magnetic_field(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_ahrs_MagneticFieldStrength& msg) { WITH_SEMAPHORE(_sem_registry); Vector3f mag_vector; AP_Compass_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, 0); if (driver != nullptr) { mag_vector[0] = msg.magnetic_field_ga[0]; mag_vector[1] = msg.magnetic_field_ga[1]; mag_vector[2] = msg.magnetic_field_ga[2]; driver->handle_mag_msg(mag_vector); } } void AP_Compass_DroneCAN::handle_magnetic_field_2(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_ahrs_MagneticFieldStrength2 &msg) { WITH_SEMAPHORE(_sem_registry); Vector3f mag_vector; uint8_t sensor_id = msg.sensor_id; AP_Compass_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, sensor_id); if (driver != nullptr) { mag_vector[0] = msg.magnetic_field_ga[0]; mag_vector[1] = msg.magnetic_field_ga[1]; mag_vector[2] = msg.magnetic_field_ga[2]; driver->handle_mag_msg(mag_vector); } } void AP_Compass_DroneCAN::read(void) { drain_accumulated_samples(_instance); } #endif // AP_COMPASS_DRONECAN_ENABLED