#ifndef _APO_COMMON_H #define _APO_COMMON_H FastSerialPort0(Serial); FastSerialPort1(Serial1); FastSerialPort2(Serial2); FastSerialPort3(Serial3); /* * Required Global Declarations */ static apo::AP_Autopilot * autoPilot; void setup() { using namespace apo; AP_Var::load_all(); // Declare all parts of the system AP_Navigator * navigator = NULL; AP_Guide * guide = NULL; AP_Controller * controller = NULL; AP_HardwareAbstractionLayer * hal = NULL; /*/ * Communications */ Serial.begin(debugBaud, 128, 128); // debug //// hardware abstraction layer hal = new AP_HardwareAbstractionLayer(halMode, board, vehicle); //// debug serial hal->debug = &Serial; hal->debug->println_P(PSTR("initializing debug line")); // initialize radio hal->radio = new APM_RC_APM1; // initialize scheduler hal->isr_registry = new Arduino_Mega_ISR_Registry; hal->scheduler = new AP_TimerProcess; hal->scheduler->init(hal->isr_registry); /* * Sensor initialization */ if (hal->getMode() == MODE_LIVE) { hal->debug->println_P(PSTR("initializing adc")); hal->adc = new ADC_CLASS; hal->adc->Init(hal->scheduler); if (batteryMonitorEnabled) { hal->batteryMonitor = new AP_BatteryMonitor(batteryPin,batteryVoltageDivRatio,batteryMinVolt,batteryMaxVolt); } if (gpsEnabled) { Serial1.begin(gpsBaud, 128, 16); // gps hal->debug->println_P(PSTR("initializing gps")); AP_GPS_Auto gpsDriver(&Serial1, &(hal->gps)); hal->gps = &gpsDriver; hal->gps->callback = delay; hal->gps->init(); } if (baroEnabled) { hal->debug->println_P(PSTR("initializing baro")); hal->baro = new BARO_CLASS; hal->baro->Init(); } if (compassEnabled) { Wire.begin(); hal->debug->println_P(PSTR("initializing compass")); hal->compass = new COMPASS_CLASS; hal->compass->set_orientation(compassOrientation); hal->compass->set_offsets(0,0,0); hal->compass->set_declination(0.0); hal->compass->init(); } /** * Initialize ultrasonic sensors. If sensors are not plugged in, the navigator will not * initialize them and NULL will be assigned to those corresponding pointers. * On detecting NU/LL assigned to any ultrasonic sensor, its corresponding block of code * will not be executed by the navigator. * The coordinate system is assigned by the right hand rule with the thumb pointing down. * In set_orientation, it is defined as (front/back,left/right,down,up) */ if (rangeFinderFrontEnabled) { hal->debug->println_P(PSTR("initializing front range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(1),new ModeFilter); rangeFinder->set_orientation(1, 0, 0); hal->rangeFinders.push_back(rangeFinder); } if (rangeFinderBackEnabled) { hal->debug->println_P(PSTR("initializing back range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(2),new ModeFilter); rangeFinder->set_orientation(-1, 0, 0); hal->rangeFinders.push_back(rangeFinder); } if (rangeFinderLeftEnabled) { hal->debug->println_P(PSTR("initializing left range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(3),new ModeFilter); rangeFinder->set_orientation(0, -1, 0); hal->rangeFinders.push_back(rangeFinder); } if (rangeFinderRightEnabled) { hal->debug->println_P(PSTR("initializing right range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(4),new ModeFilter); rangeFinder->set_orientation(0, 1, 0); hal->rangeFinders.push_back(rangeFinder); } if (rangeFinderUpEnabled) { hal->debug->println_P(PSTR("initializing up range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(5),new ModeFilter); rangeFinder->set_orientation(0, 0, -1); hal->rangeFinders.push_back(rangeFinder); } if (rangeFinderDownEnabled) { hal->debug->println_P(PSTR("initializing down range finder")); RangeFinder * rangeFinder = new RANGE_FINDER_CLASS(new AP_AnalogSource_Arduino(6),new ModeFilter); rangeFinder->set_orientation(0, 0, 1); hal->rangeFinders.push_back(rangeFinder); } /* * navigation sensors */ hal->debug->println_P(PSTR("initializing imu")); hal->ins = new AP_InertialSensor_Oilpan(hal->adc); hal->ins->init(hal->scheduler); //hal->ins = new AP_InertialSensor_MPU6000(mpu6000SelectPin) hal->debug->println_P(PSTR("initializing ins")); delay(2000); hal->imu = new AP_IMU_INS(hal->ins, k_sensorCalib); hal->imu->init(IMU::WARM_START,delay,hal->scheduler); hal->debug->println_P(PSTR("setup completed")); } /* * Select guidance, navigation, control algorithms */ navigator = new NAVIGATOR_CLASS(hal); guide = new GUIDE_CLASS(navigator, hal, velCmd, xt, xtLim); controller = new CONTROLLER_CLASS(navigator,guide,hal); /* * CommLinks */ if (board==BOARD_ARDUPILOTMEGA_2) { Serial2.begin(telemBaud, 128, 128); // gcs hal->gcs = new COMMLINK_CLASS(&Serial2, navigator, guide, controller, hal, heartBeatTimeout); } else { Serial3.begin(telemBaud, 128, 128); // gcs hal->gcs = new COMMLINK_CLASS(&Serial3, navigator, guide, controller, hal, heartBeatTimeout); } /* * Hardware in the Loop */ if (hal->getMode() == MODE_HIL_CNTL) { Serial.println("HIL line setting up"); Serial1.begin(hilBaud, 128, 128); delay(1000); Serial1.println("starting hil"); hal->hil = new COMMLINK_CLASS(&Serial1, navigator, guide, controller, hal, heartBeatTimeout); } /* * Start the autopil/ot */ hal->debug->printf_P(PSTR("initializing autopilot\n")); hal->debug->printf_P(PSTR("free ram: %d bytes\n"),freeMemory()); autoPilot = new apo::AP_Autopilot(navigator, guide, controller, hal, loopRate, loop0Rate, loop1Rate, loop2Rate, loop3Rate); } void loop() { autoPilot->update(); } #endif //_APO_COMMON_H // vim:ts=4:sw=4:expandtab