#include #include "AC_PosControl.h" #include #include extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) // default gains for Plane # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default # define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default # define POSCONTROL_ACC_Z_FILT_HZ 10.0f // vertical acceleration controller input filter default # define POSCONTROL_ACC_Z_DT 0.02f // vertical acceleration controller dt default # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default # define POSCONTROL_VEL_XY_P 1.4f // horizontal velocity controller P gain default # define POSCONTROL_VEL_XY_I 0.7f // horizontal velocity controller I gain default # define POSCONTROL_VEL_XY_D 0.35f // horizontal velocity controller D gain default # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D #elif APM_BUILD_TYPE(APM_BUILD_ArduSub) // default gains for Sub # define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default # define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_IMAX 100 // vertical acceleration controller IMAX gain default # define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default # define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default # define POSCONTROL_VEL_XY_P 1.0f // horizontal velocity controller P gain default # define POSCONTROL_VEL_XY_I 0.5f // horizontal velocity controller I gain default # define POSCONTROL_VEL_XY_D 0.0f // horizontal velocity controller D gain default # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D #else // default gains for Copter / TradHeli # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default # define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default # define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default # define POSCONTROL_VEL_XY_P 2.0f // horizontal velocity controller P gain default # define POSCONTROL_VEL_XY_I 1.0f // horizontal velocity controller I gain default # define POSCONTROL_VEL_XY_D 0.5f // horizontal velocity controller D gain default # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D #endif const AP_Param::GroupInfo AC_PosControl::var_info[] = { // 0 was used for HOVER // @Param: _ACC_XY_FILT // @DisplayName: XY Acceleration filter cutoff frequency // @Description: Lower values will slow the response of the navigation controller and reduce twitchiness // @Units: Hz // @Range: 0.5 5 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ), // @Param: _POSZ_P // @DisplayName: Position (vertical) controller P gain // @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller // @Range: 1.000 3.000 // @User: Standard AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P), // @Param: _VELZ_P // @DisplayName: Velocity (vertical) controller P gain // @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller // @Range: 1.000 8.000 // @User: Standard AP_SUBGROUPINFO(_p_vel_z, "_VELZ_", 3, AC_PosControl, AC_P), // @Param: _ACCZ_P // @DisplayName: Acceleration (vertical) controller P gain // @Description: Acceleration (vertical) controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output // @Range: 0.500 1.500 // @Increment: 0.05 // @User: Standard // @Param: _ACCZ_I // @DisplayName: Acceleration (vertical) controller I gain // @Description: Acceleration (vertical) controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration // @Range: 0.000 3.000 // @User: Standard // @Param: _ACCZ_IMAX // @DisplayName: Acceleration (vertical) controller I gain maximum // @Description: Acceleration (vertical) controller I gain maximum. Constrains the maximum pwm that the I term will generate // @Range: 0 1000 // @Units: d% // @User: Standard // @Param: _ACCZ_D // @DisplayName: Acceleration (vertical) controller D gain // @Description: Acceleration (vertical) controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration // @Range: 0.000 0.400 // @User: Standard // @Param: _ACCZ_FILT // @DisplayName: Acceleration (vertical) controller filter // @Description: Filter applied to acceleration to reduce noise. Lower values reduce noise but add delay. // @Range: 1.000 100.000 // @Units: Hz // @User: Standard AP_SUBGROUPINFO(_pid_accel_z, "_ACCZ_", 4, AC_PosControl, AC_PID), // @Param: _POSXY_P // @DisplayName: Position (horizonal) controller P gain // @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller // @Range: 0.500 2.000 // @User: Standard AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P), // @Param: _VELXY_P // @DisplayName: Velocity (horizontal) P gain // @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration // @Range: 0.1 6.0 // @Increment: 0.1 // @User: Advanced // @Param: _VELXY_I // @DisplayName: Velocity (horizontal) I gain // @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration // @Range: 0.02 1.00 // @Increment: 0.01 // @User: Advanced // @Param: _VELXY_D // @DisplayName: Velocity (horizontal) D gain // @Description: Velocity (horizontal) D gain. Corrects short-term changes in velocity // @Range: 0.00 1.00 // @Increment: 0.001 // @User: Advanced // @Param: _VELXY_IMAX // @DisplayName: Velocity (horizontal) integrator maximum // @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output // @Range: 0 4500 // @Increment: 10 // @Units: cm/s/s // @User: Advanced // @Param: _VELXY_FILT // @DisplayName: Velocity (horizontal) input filter // @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms // @Range: 0 100 // @Units: Hz // @User: Advanced // @Param: _VELXY_D_FILT // @DisplayName: Velocity (horizontal) input filter // @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms // @Range: 0 100 // @Units: Hz // @User: Advanced AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D), // @Param: _ANGLE_MAX // @DisplayName: Position Control Angle Max // @Description: Maximum lean angle autopilot can request. Set to zero to use ANGLE_MAX parameter value // @Units: deg // @Range: 0 45 // @Increment: 1 // @User: Advanced AP_GROUPINFO("_ANGLE_MAX", 7, AC_PosControl, _lean_angle_max, 0.0f), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_PosControl::AC_PosControl(const AP_AHRS_View& ahrs, const AP_InertialNav& inav, const AP_Motors& motors, AC_AttitudeControl& attitude_control) : _ahrs(ahrs), _inav(inav), _motors(motors), _attitude_control(attitude_control), _p_pos_z(POSCONTROL_POS_Z_P), _p_vel_z(POSCONTROL_VEL_Z_P), _pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, POSCONTROL_ACC_Z_IMAX, POSCONTROL_ACC_Z_FILT_HZ, POSCONTROL_ACC_Z_DT), _p_pos_xy(POSCONTROL_POS_XY_P), _pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_50HZ), _dt(POSCONTROL_DT_400HZ), _speed_down_cms(POSCONTROL_SPEED_DOWN), _speed_up_cms(POSCONTROL_SPEED_UP), _speed_cms(POSCONTROL_SPEED), _accel_z_cms(POSCONTROL_ACCEL_Z), _accel_cms(POSCONTROL_ACCEL_XY), _leash(POSCONTROL_LEASH_LENGTH_MIN), _leash_down_z(POSCONTROL_LEASH_LENGTH_MIN), _leash_up_z(POSCONTROL_LEASH_LENGTH_MIN), _accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ) { AP_Param::setup_object_defaults(this, var_info); // initialise flags _flags.recalc_leash_z = true; _flags.recalc_leash_xy = true; _flags.reset_desired_vel_to_pos = true; _flags.reset_accel_to_lean_xy = true; _flags.reset_rate_to_accel_z = true; _flags.reset_accel_to_throttle = true; _flags.freeze_ff_z = true; _flags.use_desvel_ff_z = true; _limit.pos_up = true; _limit.pos_down = true; _limit.vel_up = true; _limit.vel_down = true; _limit.accel_xy = true; } /// /// z-axis position controller /// /// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025) void AC_PosControl::set_dt(float delta_sec) { _dt = delta_sec; // update PID controller dt _pid_accel_z.set_dt(_dt); _pid_vel_xy.set_dt(_dt); // update rate z-axis velocity error and accel error filters _vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ); } /// set_max_speed_z - set the maximum climb and descent rates /// To-Do: call this in the main code as part of flight mode initialisation void AC_PosControl::set_max_speed_z(float speed_down, float speed_up) { // ensure speed_down is always negative speed_down = -fabsf(speed_down); if ((fabsf(_speed_down_cms-speed_down) > 1.0f) || (fabsf(_speed_up_cms-speed_up) > 1.0f)) { _speed_down_cms = speed_down; _speed_up_cms = speed_up; _flags.recalc_leash_z = true; calc_leash_length_z(); } } /// set_max_accel_z - set the maximum vertical acceleration in cm/s/s void AC_PosControl::set_max_accel_z(float accel_cmss) { if (fabsf(_accel_z_cms-accel_cmss) > 1.0f) { _accel_z_cms = accel_cmss; _flags.recalc_leash_z = true; calc_leash_length_z(); } } /// set_alt_target_with_slew - adjusts target towards a final altitude target /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) { float alt_change = alt_cm-_pos_target.z; // do not use z-axis desired velocity feed forward _flags.use_desvel_ff_z = false; // adjust desired alt if motors have not hit their limits if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) { if (!is_zero(dt)) { float climb_rate_cms = constrain_float(alt_change/dt, _speed_down_cms, _speed_up_cms); _pos_target.z += climb_rate_cms*dt; _vel_desired.z = climb_rate_cms; // recorded for reporting purposes } } else { // recorded for reporting purposes _vel_desired.z = 0.0f; } // do not let target get too far from current altitude float curr_alt = _inav.get_altitude(); _pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z); } /// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend) { // adjust desired alt if motors have not hit their limits // To-Do: add check of _limit.pos_down? if ((climb_rate_cms<0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { _pos_target.z += climb_rate_cms * dt; } // do not use z-axis desired velocity feed forward // vel_desired set to desired climb rate for reporting and land-detector _flags.use_desvel_ff_z = false; _vel_desired.z = climb_rate_cms; } /// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded /// set force_descend to true during landing to allow target to move low enough to slow the motors void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend) { // calculated increased maximum acceleration if over speed float accel_z_cms = _accel_z_cms; if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) { accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms; } if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) { accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms; } accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f); // jerk_z is calculated to reach full acceleration in 1000ms. float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO; float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f*fabsf(_vel_desired.z - climb_rate_cms)*jerk_z)); _accel_last_z_cms += jerk_z * dt; _accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms); float vel_change_limit = _accel_last_z_cms * dt; _vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit); _flags.use_desvel_ff_z = true; // adjust desired alt if motors have not hit their limits // To-Do: add check of _limit.pos_down? if ((_vel_desired.z<0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { _pos_target.z += _vel_desired.z * dt; } } /// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s /// should be called continuously (with dt set to be the expected time between calls) /// almost no checks are performed on the input void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt) { _pos_target.z += climb_rate_cms * dt; } /// shift altitude target (positive means move altitude up) void AC_PosControl::shift_alt_target(float z_cm) { _pos_target.z += z_cm; // freeze feedforward to avoid jump if (!is_zero(z_cm)) { freeze_ff_z(); } } /// relax_alt_hold_controllers - set all desired and targets to measured void AC_PosControl::relax_alt_hold_controllers(float throttle_setting) { _pos_target.z = _inav.get_altitude(); _vel_desired.z = 0.0f; _flags.use_desvel_ff_z = false; _vel_target.z = _inav.get_velocity_z(); _vel_last.z = _inav.get_velocity_z(); _accel_desired.z = 0.0f; _accel_last_z_cms = 0.0f; _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; _flags.reset_accel_to_throttle = true; _pid_accel_z.set_integrator((throttle_setting-_motors.get_throttle_hover())*1000.0f); } // get_alt_error - returns altitude error in cm float AC_PosControl::get_alt_error() const { return (_pos_target.z - _inav.get_altitude()); } /// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home void AC_PosControl::set_target_to_stopping_point_z() { // check if z leash needs to be recalculated calc_leash_length_z(); get_stopping_point_z(_pos_target); } /// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const { const float curr_pos_z = _inav.get_altitude(); float curr_vel_z = _inav.get_velocity_z(); float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt float linear_velocity; // the velocity we swap between linear and sqrt // if position controller is active add current velocity error to avoid sudden jump in acceleration if (is_active_z()) { curr_vel_z += _vel_error.z; if (_flags.use_desvel_ff_z) { curr_vel_z -= _vel_desired.z; } } // avoid divide by zero by using current position if kP is very low or acceleration is zero if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) { stopping_point.z = curr_pos_z; return; } // calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function linear_velocity = _accel_z_cms/_p_pos_z.kP(); if (fabsf(curr_vel_z) < linear_velocity) { // if our current velocity is below the cross-over point we use a linear function stopping_point.z = curr_pos_z + curr_vel_z/_p_pos_z.kP(); } else { linear_distance = _accel_z_cms/(2.0f*_p_pos_z.kP()*_p_pos_z.kP()); if (curr_vel_z > 0){ stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); } else { stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); } } stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_DOWN_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_UP_MAX); } /// init_takeoff - initialises target altitude if we are taking off void AC_PosControl::init_takeoff() { const Vector3f& curr_pos = _inav.get_position(); _pos_target.z = curr_pos.z; // freeze feedforward to avoid jump freeze_ff_z(); // shift difference between last motor out and hover throttle into accelerometer I _pid_accel_z.set_integrator((_motors.get_throttle()-_motors.get_throttle_hover())*1000.0f); // initialise ekf reset handler init_ekf_z_reset(); } // is_active_z - returns true if the z-axis position controller has been run very recently bool AC_PosControl::is_active_z() const { return ((AP_HAL::micros64() - _last_update_z_us) <= POSCONTROL_ACTIVE_TIMEOUT_US); } /// update_z_controller - fly to altitude in cm above home void AC_PosControl::update_z_controller() { // check time since last cast const uint64_t now_us = AP_HAL::micros64(); if (now_us - _last_update_z_us > POSCONTROL_ACTIVE_TIMEOUT_US) { _flags.reset_rate_to_accel_z = true; _flags.reset_accel_to_throttle = true; } _last_update_z_us = now_us; // check for ekf altitude reset check_for_ekf_z_reset(); // check if leash lengths need to be recalculated calc_leash_length_z(); // call z-axis position controller run_z_controller(); } /// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration /// called by update_z_controller if z-axis speed or accelerations are changed void AC_PosControl::calc_leash_length_z() { if (_flags.recalc_leash_z) { _leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP()); _leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP()); _flags.recalc_leash_z = false; } } // run position control for Z axis // target altitude should be set with one of these functions: set_alt_target, set_target_to_stopping_point_z, init_takeoff // calculates desired rate in earth-frame z axis and passes to rate controller // vel_up_max, vel_down_max should have already been set before calling this method void AC_PosControl::run_z_controller() { float curr_alt = _inav.get_altitude(); // clear position limit flags _limit.pos_up = false; _limit.pos_down = false; // calculate altitude error _pos_error.z = _pos_target.z - curr_alt; // do not let target altitude get too far from current altitude if (_pos_error.z > _leash_up_z) { _pos_target.z = curr_alt + _leash_up_z; _pos_error.z = _leash_up_z; _limit.pos_up = true; } if (_pos_error.z < -_leash_down_z) { _pos_target.z = curr_alt - _leash_down_z; _pos_error.z = -_leash_down_z; _limit.pos_down = true; } // calculate _vel_target.z using from _pos_error.z using sqrt controller _vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, _dt); // check speed limits // To-Do: check these speed limits here or in the pos->rate controller _limit.vel_up = false; _limit.vel_down = false; if (_vel_target.z < _speed_down_cms) { _vel_target.z = _speed_down_cms; _limit.vel_down = true; } if (_vel_target.z > _speed_up_cms) { _vel_target.z = _speed_up_cms; _limit.vel_up = true; } // add feed forward component if (_flags.use_desvel_ff_z) { _vel_target.z += _vel_desired.z; } // the following section calculates acceleration required to achieve the velocity target const Vector3f& curr_vel = _inav.get_velocity(); // TODO: remove velocity derivative calculation // reset last velocity target to current target if (_flags.reset_rate_to_accel_z) { _vel_last.z = _vel_target.z; } // feed forward desired acceleration calculation if (_dt > 0.0f) { if (!_flags.freeze_ff_z) { _accel_desired.z = (_vel_target.z - _vel_last.z)/_dt; } else { // stop the feed forward being calculated during a known discontinuity _flags.freeze_ff_z = false; } } else { _accel_desired.z = 0.0f; } // store this iteration's velocities for the next iteration _vel_last.z = _vel_target.z; // reset velocity error and filter if this controller has just been engaged if (_flags.reset_rate_to_accel_z) { // Reset Filter _vel_error.z = 0; _vel_error_filter.reset(0); _flags.reset_rate_to_accel_z = false; } else { // calculate rate error and filter with cut off frequency of 2 Hz _vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt); } _accel_target.z = _p_vel_z.get_p(_vel_error.z); _accel_target.z += _accel_desired.z; // the following section calculates a desired throttle needed to achieve the acceleration target float z_accel_meas; // actual acceleration float p,i,d; // used to capture pid values for logging // Calculate Earth Frame Z acceleration z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; // reset target altitude if this controller has just been engaged if (_flags.reset_accel_to_throttle) { // Reset Filter _accel_error.z = 0; _flags.reset_accel_to_throttle = false; } else { // calculate accel error _accel_error.z = _accel_target.z - z_accel_meas; } // set input to PID _pid_accel_z.set_input_filter_all(_accel_error.z); _pid_accel_z.set_desired_rate(_accel_target.z); // separately calculate p, i, d values for logging p = _pid_accel_z.get_p(); // get i term i = _pid_accel_z.get_integrator(); // ensure imax is always large enough to overpower hover throttle if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) { _pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f); } // update i term as long as we haven't breached the limits or the I term will certainly reduce // To-Do: should this be replaced with limits check from attitude_controller? if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) { i = _pid_accel_z.get_i(); } // get d term d = _pid_accel_z.get_d(); float thr_out = (p+i+d)*0.001f +_motors.get_throttle_hover(); // send throttle to attitude controller with angle boost _attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ); } /// /// lateral position controller /// /// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s void AC_PosControl::set_max_accel_xy(float accel_cmss) { if (fabsf(_accel_cms-accel_cmss) > 1.0f) { _accel_cms = accel_cmss; _flags.recalc_leash_xy = true; calc_leash_length_xy(); } } /// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s void AC_PosControl::set_max_speed_xy(float speed_cms) { if (fabsf(_speed_cms-speed_cms) > 1.0f) { _speed_cms = speed_cms; _flags.recalc_leash_xy = true; calc_leash_length_xy(); } } /// set_pos_target in cm from home void AC_PosControl::set_pos_target(const Vector3f& position) { _pos_target = position; _flags.use_desvel_ff_z = false; _vel_desired.z = 0.0f; // initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run // To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle //_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); //_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); } /// set_xy_target in cm from home void AC_PosControl::set_xy_target(float x, float y) { _pos_target.x = x; _pos_target.y = y; } /// shift position target target in x, y axis void AC_PosControl::shift_pos_xy_target(float x_cm, float y_cm) { // move pos controller target _pos_target.x += x_cm; _pos_target.y += y_cm; } /// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home void AC_PosControl::set_target_to_stopping_point_xy() { // check if xy leash needs to be recalculated calc_leash_length_xy(); get_stopping_point_xy(_pos_target); } /// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration /// distance_max allows limiting distance to stopping point /// results placed in stopping_position vector /// set_max_accel_xy() should be called before this method to set vehicle acceleration /// set_leash_length() should have been called before this method void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const { const Vector3f curr_pos = _inav.get_position(); Vector3f curr_vel = _inav.get_velocity(); float linear_distance; // the distance at which we swap from a linear to sqrt response float linear_velocity; // the velocity above which we swap from a linear to sqrt response float stopping_dist; // the distance within the vehicle can stop float kP = _p_pos_xy.kP(); // add velocity error to current velocity if (is_active_xy()) { curr_vel.x += _vel_error.x; curr_vel.y += _vel_error.y; } // calculate current velocity float vel_total = norm(curr_vel.x, curr_vel.y); // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) { stopping_point.x = curr_pos.x; stopping_point.y = curr_pos.y; return; } // calculate point at which velocity switches from linear to sqrt linear_velocity = _accel_cms/kP; // calculate distance within which we can stop if (vel_total < linear_velocity) { stopping_dist = vel_total/kP; } else { linear_distance = _accel_cms/(2.0f*kP*kP); stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms); } // constrain stopping distance stopping_dist = constrain_float(stopping_dist, 0, _leash); // convert the stopping distance into a stopping point using velocity vector stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total); stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total); } /// get_distance_to_target - get horizontal distance to target position in cm float AC_PosControl::get_distance_to_target() const { return norm(_pos_error.x, _pos_error.y); } /// get_bearing_to_target - get bearing to target position in centi-degrees int32_t AC_PosControl::get_bearing_to_target() const { return get_bearing_cd(_inav.get_position(), _pos_target); } // is_active_xy - returns true if the xy position controller has been run very recently bool AC_PosControl::is_active_xy() const { return ((AP_HAL::micros64() - _last_update_xy_us) <= POSCONTROL_ACTIVE_TIMEOUT_US); } /// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request float AC_PosControl::get_lean_angle_max_cd() const { if (is_zero(_lean_angle_max)) { return _attitude_control.lean_angle_max(); } return _lean_angle_max * 100.0f; } /// init_xy_controller - initialise the xy controller /// this should be called after setting the position target and the desired velocity and acceleration /// sets target roll angle, pitch angle and I terms based on vehicle current lean angles /// should be called once whenever significant changes to the position target are made /// this does not update the xy target void AC_PosControl::init_xy_controller() { // set roll, pitch lean angle targets to current attitude // todo: this should probably be based on the desired attitude not the current attitude _roll_target = _ahrs.roll_sensor; _pitch_target = _ahrs.pitch_sensor; // initialise I terms from lean angles _pid_vel_xy.reset_filter(); lean_angles_to_accel(_accel_target.x, _accel_target.y); _pid_vel_xy.set_integrator(_accel_target-_accel_desired); // flag reset required in rate to accel step _flags.reset_desired_vel_to_pos = true; _flags.reset_accel_to_lean_xy = true; // initialise ekf xy reset handler init_ekf_xy_reset(); } /// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher void AC_PosControl::update_xy_controller() { // compute dt const uint64_t now_us = AP_HAL::micros64(); float dt = (now_us - _last_update_xy_us) * 1.0e-6f; // sanity check dt if (dt >= POSCONTROL_ACTIVE_TIMEOUT_US * 1.0e-6f) { dt = 0.0f; } // check for ekf xy position reset check_for_ekf_xy_reset(); // check if xy leash needs to be recalculated calc_leash_length_xy(); // translate any adjustments from pilot to loiter target desired_vel_to_pos(dt); // run horizontal position controller run_xy_controller(dt); // update xy update time _last_update_xy_us = now_us; } float AC_PosControl::time_since_last_xy_update() const { const uint64_t now_us = AP_HAL::micros64(); return (now_us - _last_update_xy_us) * 1.0e-6f; } // write log to dataflash void AC_PosControl::write_log() { const Vector3f &pos_target = get_pos_target(); const Vector3f &vel_target = get_vel_target(); const Vector3f &accel_target = get_accel_target(); const Vector3f &position = _inav.get_position(); const Vector3f &velocity = _inav.get_velocity(); float accel_x, accel_y; lean_angles_to_accel(accel_x, accel_y); AP::logger().Write("PSC", "TimeUS,TPX,TPY,PX,PY,TVX,TVY,VX,VY,TAX,TAY,AX,AY", "smmmmnnnnoooo", "FBBBBBBBBBBBB", "Qffffffffffff", AP_HAL::micros64(), (double)pos_target.x, (double)pos_target.y, (double)position.x, (double)position.y, (double)vel_target.x, (double)vel_target.y, (double)velocity.x, (double)velocity.y, (double)accel_target.x, (double)accel_target.y, (double)accel_x, (double)accel_y); } /// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller void AC_PosControl::init_vel_controller_xyz() { // set roll, pitch lean angle targets to current attitude _roll_target = _ahrs.roll_sensor; _pitch_target = _ahrs.pitch_sensor; _pid_vel_xy.reset_filter(); lean_angles_to_accel(_accel_target.x, _accel_target.y); _pid_vel_xy.set_integrator(_accel_target); // flag reset required in rate to accel step _flags.reset_desired_vel_to_pos = true; _flags.reset_accel_to_lean_xy = true; // set target position const Vector3f& curr_pos = _inav.get_position(); set_xy_target(curr_pos.x, curr_pos.y); set_alt_target(curr_pos.z); // move current vehicle velocity into feed forward velocity const Vector3f& curr_vel = _inav.get_velocity(); set_desired_velocity(curr_vel); // set vehicle acceleration to zero set_desired_accel_xy(0.0f,0.0f); // initialise ekf reset handlers init_ekf_xy_reset(); init_ekf_z_reset(); } /// update_velocity_controller_xy - run the velocity controller - should be called at 100hz or higher /// velocity targets should we set using set_desired_velocity_xy() method /// callers should use get_roll() and get_pitch() methods and sent to the attitude controller /// throttle targets will be sent directly to the motors void AC_PosControl::update_vel_controller_xy() { // capture time since last iteration const uint64_t now_us = AP_HAL::micros64(); float dt = (now_us - _last_update_xy_us) * 1.0e-6f; // sanity check dt if (dt >= 0.2f) { dt = 0.0f; } // check for ekf xy position reset check_for_ekf_xy_reset(); // check if xy leash needs to be recalculated calc_leash_length_xy(); // apply desired velocity request to position target // TODO: this will need to be removed and added to the calling function. desired_vel_to_pos(dt); // run position controller run_xy_controller(dt); // update xy update time _last_update_xy_us = now_us; } /// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher /// velocity targets should we set using set_desired_velocity_xyz() method /// callers should use get_roll() and get_pitch() methods and sent to the attitude controller /// throttle targets will be sent directly to the motors void AC_PosControl::update_vel_controller_xyz() { update_vel_controller_xy(); // update altitude target set_alt_target_from_climb_rate_ff(_vel_desired.z, _dt, false); // run z-axis position controller update_z_controller(); } float AC_PosControl::get_horizontal_error() const { return norm(_pos_error.x, _pos_error.y); } /// /// private methods /// /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration /// should be called whenever the speed, acceleration or position kP is modified void AC_PosControl::calc_leash_length_xy() { // todo: remove _flags.recalc_leash_xy or don't call this function after each variable change. if (_flags.recalc_leash_xy) { _leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP()); _flags.recalc_leash_xy = false; } } /// move velocity target using desired acceleration void AC_PosControl::desired_accel_to_vel(float nav_dt) { // range check nav_dt if (nav_dt < 0) { return; } // update target velocity if (_flags.reset_desired_vel_to_pos) { _flags.reset_desired_vel_to_pos = false; } else { _vel_desired.x += _accel_desired.x * nav_dt; _vel_desired.y += _accel_desired.y * nav_dt; } } /// desired_vel_to_pos - move position target using desired velocities void AC_PosControl::desired_vel_to_pos(float nav_dt) { // range check nav_dt if( nav_dt < 0 ) { return; } // update target position if (_flags.reset_desired_vel_to_pos) { _flags.reset_desired_vel_to_pos = false; } else { _pos_target.x += _vel_desired.x * nav_dt; _pos_target.y += _vel_desired.y * nav_dt; } } /// run horizontal position controller correcting position and velocity /// converts position (_pos_target) to target velocity (_vel_target) /// desired velocity (_vel_desired) is combined into final target velocity /// converts desired velocities in lat/lon directions to accelerations in lat/lon frame /// converts desired accelerations provided in lat/lon frame to roll/pitch angles void AC_PosControl::run_xy_controller(float dt) { float ekfGndSpdLimit, ekfNavVelGainScaler; AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler); Vector3f curr_pos = _inav.get_position(); float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF // avoid divide by zero if (kP <= 0.0f) { _vel_target.x = 0.0f; _vel_target.y = 0.0f; }else{ // calculate distance error _pos_error.x = _pos_target.x - curr_pos.x; _pos_error.y = _pos_target.y - curr_pos.y; // Constrain _pos_error and target position // Constrain the maximum length of _vel_target to the maximum position correction velocity // TODO: replace the leash length with a user definable maximum position correction if (limit_vector_length(_pos_error.x, _pos_error.y, _leash)) { _pos_target.x = curr_pos.x + _pos_error.x; _pos_target.y = curr_pos.y + _pos_error.y; } _vel_target = sqrt_controller(_pos_error, kP, _accel_cms); } // add velocity feed-forward _vel_target.x += _vel_desired.x; _vel_target.y += _vel_desired.y; // the following section converts desired velocities in lat/lon directions to accelerations in lat/lon frame Vector2f accel_target, vel_xy_p, vel_xy_i, vel_xy_d; // check if vehicle velocity is being overridden if (_flags.vehicle_horiz_vel_override) { _flags.vehicle_horiz_vel_override = false; } else { _vehicle_horiz_vel.x = _inav.get_velocity().x; _vehicle_horiz_vel.y = _inav.get_velocity().y; } // calculate velocity error _vel_error.x = _vel_target.x - _vehicle_horiz_vel.x; _vel_error.y = _vel_target.y - _vehicle_horiz_vel.y; // TODO: constrain velocity error and velocity target // call pi controller _pid_vel_xy.set_input(_vel_error); // get p vel_xy_p = _pid_vel_xy.get_p(); // update i term if we have not hit the accel or throttle limits OR the i term will reduce // TODO: move limit handling into the PI and PID controller if (!_limit.accel_xy && !_motors.limit.throttle_upper) { vel_xy_i = _pid_vel_xy.get_i(); } else { vel_xy_i = _pid_vel_xy.get_i_shrink(); } // get d vel_xy_d = _pid_vel_xy.get_d(); // acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise accel_target.x = (vel_xy_p.x + vel_xy_i.x + vel_xy_d.x) * ekfNavVelGainScaler; accel_target.y = (vel_xy_p.y + vel_xy_i.y + vel_xy_d.y) * ekfNavVelGainScaler; // reset accel to current desired acceleration if (_flags.reset_accel_to_lean_xy) { _accel_target_filter.reset(Vector2f(accel_target.x, accel_target.y)); _flags.reset_accel_to_lean_xy = false; } // filter correction acceleration _accel_target_filter.set_cutoff_frequency(MIN(_accel_xy_filt_hz, 5.0f*ekfNavVelGainScaler)); _accel_target_filter.apply(accel_target, dt); // pass the correction acceleration to the target acceleration output _accel_target.x = _accel_target_filter.get().x; _accel_target.y = _accel_target_filter.get().y; // Add feed forward into the target acceleration output _accel_target.x += _accel_desired.x; _accel_target.y += _accel_desired.y; // the following section converts desired accelerations provided in lat/lon frame to roll/pitch angles // limit acceleration using maximum lean angles float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd()); float accel_max = MIN(GRAVITY_MSS * 100.0f * tanf(ToRad(angle_max * 0.01f)), POSCONTROL_ACCEL_XY_MAX); _limit.accel_xy = limit_vector_length(_accel_target.x, _accel_target.y, accel_max); // update angle targets that will be passed to stabilize controller accel_to_lean_angles(_accel_target.x, _accel_target.y, _roll_target, _pitch_target); } // get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s void AC_PosControl::accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const { float accel_right, accel_forward; // rotate accelerations into body forward-right frame // todo: this should probably be based on the desired heading not the current heading accel_forward = accel_x_cmss*_ahrs.cos_yaw() + accel_y_cmss*_ahrs.sin_yaw(); accel_right = -accel_x_cmss*_ahrs.sin_yaw() + accel_y_cmss*_ahrs.cos_yaw(); // update angle targets that will be passed to stabilize controller pitch_target = atanf(-accel_forward/(GRAVITY_MSS * 100.0f))*(18000.0f/M_PI); float cos_pitch_target = cosf(pitch_target*M_PI/18000.0f); roll_target = atanf(accel_right*cos_pitch_target/(GRAVITY_MSS * 100.0f))*(18000.0f/M_PI); } // get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const { // rotate our roll, pitch angles into lat/lon frame // todo: this should probably be based on the desired attitude not the current attitude accel_x_cmss = (GRAVITY_MSS * 100) * (-_ahrs.cos_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() - _ahrs.sin_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll()*_ahrs.cos_pitch(), 0.5f); accel_y_cmss = (GRAVITY_MSS * 100) * (-_ahrs.sin_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() + _ahrs.cos_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll()*_ahrs.cos_pitch(), 0.5f); } /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const { float leash_length; // sanity check acceleration and avoid divide by zero if (accel_cms <= 0.0f) { accel_cms = POSCONTROL_ACCELERATION_MIN; } // avoid divide by zero if (kP <= 0.0f) { return POSCONTROL_LEASH_LENGTH_MIN; } // calculate leash length if(speed_cms <= accel_cms / kP) { // linear leash length based on speed close in leash_length = speed_cms / kP; }else{ // leash length grows at sqrt of speed further out leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms)); } // ensure leash is at least 1m long if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) { leash_length = POSCONTROL_LEASH_LENGTH_MIN; } return leash_length; } /// initialise ekf xy position reset check void AC_PosControl::init_ekf_xy_reset() { Vector2f pos_shift; _ekf_xy_reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift); } /// check for ekf position reset and adjust loiter or brake target position void AC_PosControl::check_for_ekf_xy_reset() { // check for position shift Vector2f pos_shift; uint32_t reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift); if (reset_ms != _ekf_xy_reset_ms) { shift_pos_xy_target(pos_shift.x * 100.0f, pos_shift.y * 100.0f); _ekf_xy_reset_ms = reset_ms; } } /// initialise ekf z axis reset check void AC_PosControl::init_ekf_z_reset() { float alt_shift; _ekf_z_reset_ms = _ahrs.getLastPosDownReset(alt_shift); } /// check for ekf position reset and adjust loiter or brake target position void AC_PosControl::check_for_ekf_z_reset() { // check for position shift float alt_shift; uint32_t reset_ms = _ahrs.getLastPosDownReset(alt_shift); if (reset_ms != 0 && reset_ms != _ekf_z_reset_ms) { shift_alt_target(-alt_shift * 100.0f); _ekf_z_reset_ms = reset_ms; } } /// limit vector to a given length, returns true if vector was limited bool AC_PosControl::limit_vector_length(float& vector_x, float& vector_y, float max_length) { float vector_length = norm(vector_x, vector_y); if ((vector_length > max_length) && is_positive(vector_length)) { vector_x *= (max_length / vector_length); vector_y *= (max_length / vector_length); return true; } return false; } /// Proportional controller with piecewise sqrt sections to constrain second derivative Vector3f AC_PosControl::sqrt_controller(const Vector3f& error, float p, float second_ord_lim) { if (second_ord_lim < 0.0f || is_zero(second_ord_lim) || is_zero(p)) { return Vector3f(error.x*p, error.y*p, error.z); } float linear_dist = second_ord_lim/sq(p); float error_length = norm(error.x, error.y); if (error_length > linear_dist) { float first_order_scale = safe_sqrt(2.0f*second_ord_lim*(error_length-(linear_dist * 0.5f)))/error_length; return Vector3f(error.x*first_order_scale, error.y*first_order_scale, error.z); } else { return Vector3f(error.x*p, error.y*p, error.z); } } bool AC_PosControl::pre_arm_checks(const char *param_prefix, char *failure_msg, const uint8_t failure_msg_len) { // validate AC_P members: const struct { const char *pid_name; AC_P &p; } ps[] = { { "POSXY", get_pos_xy_p() }, { "POSZ", get_pos_z_p() }, { "VELZ", get_vel_z_p() }, }; for (uint8_t i=0; isnprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name); return false; } } // the z-control PID doesn't use FF, so P and I must be positive if (!is_positive(get_accel_z_pid().kP())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix); return false; } if (!is_positive(get_accel_z_pid().kI())) { hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_I must be > 0", param_prefix); return false; } return true; }