/// @file AP_MotorsHeli_Dual.h /// @brief Motor control class for dual heli (tandem or transverse) /// @author Fredrik Hedberg #pragma once #include #include #include #include "AP_MotorsHeli.h" #include "AP_MotorsHeli_RSC.h" #include "AP_MotorsHeli_Swash.h" // tandem modes #define AP_MOTORS_HELI_DUAL_MODE_TANDEM 0 // tandem mode (rotors front and aft) #define AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE 1 // transverse mode (rotors side by side) #define AP_MOTORS_HELI_DUAL_MODE_INTERMESHING 2 // intermeshing mode (rotors side by side) // tandem modes #define AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH 0 // swashplate pitch tilt axis #define AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL 1 // swashplate roll tilt axis #define AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL 2 // swashplate collective axis // default differential-collective-pitch scaler #define AP_MOTORS_HELI_DUAL_DCP_SCALER 0.25f // maximum number of swashplate servos #define AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS 6 // default collective min, max and midpoints for the rear swashplate #define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN 1250 #define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX 1750 /// @class AP_MotorsHeli_Dual class AP_MotorsHeli_Dual : public AP_MotorsHeli { public: // constructor AP_MotorsHeli_Dual(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_MotorsHeli(loop_rate, speed_hz) { AP_Param::setup_object_defaults(this, var_info); }; // set_update_rate - set update rate to motors void set_update_rate( uint16_t speed_hz ) override; // output_test_seq - spin a motor at the pwm value specified virtual void output_test_seq(uint8_t motor_seq, int16_t pwm) override; // output_to_motors - sends values out to the motors void output_to_motors() override; // set_rpm - for rotor speed governor void set_rpm(float rotor_rpm) override; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000 void set_desired_rotor_speed(float desired_speed) override; // get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000 float get_main_rotor_speed() const override { return _main_rotor.get_rotor_speed(); } // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000 float get_desired_rotor_speed() const override { return _main_rotor.get_rotor_speed(); } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight bool rotor_speed_above_critical() const override { return _main_rotor.get_rotor_speed() > _main_rotor.get_critical_speed(); } // get_governor_output float get_governor_output() const override { return _main_rotor.get_governor_output(); } // get_control_output float get_control_output() const override { return _main_rotor.get_control_output(); } // calculate_scalars - recalculates various scalars used void calculate_scalars() override; // calculate_armed_scalars - recalculates scalars that can change while armed void calculate_armed_scalars() override; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) uint16_t get_motor_mask() override; // has_flybar - returns true if we have a mechical flybar bool has_flybar() const override { return AP_MOTORS_HELI_NOFLYBAR; } // supports_yaw_passthrought - returns true if we support yaw passthrough bool supports_yaw_passthrough() const override { return false; } // servo_test - move servos through full range of movement void servo_test() override; // parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check bool parameter_check(bool display_msg) const override; // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; const char* get_frame_string() const override { return "HELI_DUAL"; } protected: // init_outputs bool init_outputs () override; // update_motor_controls - sends commands to motor controllers void update_motor_control(RotorControlState state) override; // get_swashplate - calculate movement of each swashplate based on configuration float get_swashplate(int8_t swash_num, int8_t swash_axis, float pitch_input, float roll_input, float yaw_input, float coll_input); // move_actuators - moves swash plate to attitude of parameters passed in void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override; // objects we depend upon AP_MotorsHeli_Swash _swashplate1; // swashplate1 AP_MotorsHeli_Swash _swashplate2; // swashplate2 // internal variables float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function float _servo_out[8]; // output value sent to motor // parameters AP_Int16 _collective2_min; // Lowest possible servo position for the rear swashplate AP_Int16 _collective2_max; // Highest possible servo position for the rear swashplate AP_Int8 _dual_mode; // which dual mode the heli is AP_Float _dcp_scaler; // scaling factor applied to the differential-collective-pitch AP_Float _dcp_yaw_effect; // feed-forward compensation to automatically add yaw input when differential collective pitch is applied. AP_Float _yaw_scaler; // scaling factor applied to the yaw mixing AP_Float _dcp_trim; // used to easily trim dcp axis AP_Float _yaw_rev_expo; // yaw reverser smoothing exponent, for intermeshing mode only. // internal variables float _collective2_zero_thrst_pct; };