/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // ArduSub scheduling, originally copied from ArduCopter #include "Sub.h" #define SCHED_TASK(func, rate_hz, max_time_micros, priority) SCHED_TASK_CLASS(Sub, &sub, func, rate_hz, max_time_micros, priority) #define FAST_TASK(func) FAST_TASK_CLASS(Sub, &sub, func) /* scheduler table - all tasks should be listed here. All entries in this table must be ordered by priority. This table is interleaved with the table in AP_Vehicle to determine the order in which tasks are run. Convenience methods SCHED_TASK and SCHED_TASK_CLASS are provided to build entries in this structure: SCHED_TASK arguments: - name of static function to call - rate (in Hertz) at which the function should be called - expected time (in MicroSeconds) that the function should take to run - priority (0 through 255, lower number meaning higher priority) SCHED_TASK_CLASS arguments: - class name of method to be called - instance on which to call the method - method to call on that instance - rate (in Hertz) at which the method should be called - expected time (in MicroSeconds) that the method should take to run - priority (0 through 255, lower number meaning higher priority) */ const AP_Scheduler::Task Sub::scheduler_tasks[] = { // update INS immediately to get current gyro data populated FAST_TASK_CLASS(AP_InertialSensor, &sub.ins, update), // run low level rate controllers that only require IMU data FAST_TASK(run_rate_controller), // send outputs to the motors library immediately FAST_TASK(motors_output), // run EKF state estimator (expensive) FAST_TASK(read_AHRS), // Inertial Nav FAST_TASK(read_inertia), // check if ekf has reset target heading FAST_TASK(check_ekf_yaw_reset), // run the attitude controllers FAST_TASK(update_flight_mode), // update home from EKF if necessary FAST_TASK(update_home_from_EKF), // check if we've reached the surface or bottom FAST_TASK(update_surface_and_bottom_detector), #if HAL_MOUNT_ENABLED // camera mount's fast update FAST_TASK_CLASS(AP_Mount, &sub.camera_mount, update_fast), #endif SCHED_TASK(fifty_hz_loop, 50, 75, 3), SCHED_TASK_CLASS(AP_GPS, &sub.gps, update, 50, 200, 6), #if AP_OPTICALFLOW_ENABLED SCHED_TASK_CLASS(AP_OpticalFlow, &sub.optflow, update, 200, 160, 9), #endif SCHED_TASK(update_batt_compass, 10, 120, 12), SCHED_TASK(read_rangefinder, 20, 100, 15), SCHED_TASK(update_altitude, 10, 100, 18), SCHED_TASK(three_hz_loop, 3, 75, 21), SCHED_TASK(update_turn_counter, 10, 50, 24), SCHED_TASK(one_hz_loop, 1, 100, 33), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_receive, 400, 180, 36), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_send, 400, 550, 39), #if HAL_MOUNT_ENABLED SCHED_TASK_CLASS(AP_Mount, &sub.camera_mount, update, 50, 75, 45), #endif #if AP_CAMERA_ENABLED SCHED_TASK_CLASS(AP_Camera, &sub.camera, update, 50, 75, 48), #endif #if HAL_LOGGING_ENABLED SCHED_TASK(ten_hz_logging_loop, 10, 350, 51), SCHED_TASK(twentyfive_hz_logging, 25, 110, 54), SCHED_TASK_CLASS(AP_Logger, &sub.logger, periodic_tasks, 400, 300, 57), #endif SCHED_TASK_CLASS(AP_InertialSensor, &sub.ins, periodic, 400, 50, 60), #if HAL_LOGGING_ENABLED SCHED_TASK_CLASS(AP_Scheduler, &sub.scheduler, update_logging, 0.1, 75, 63), #endif #if AP_RPM_ENABLED SCHED_TASK_CLASS(AP_RPM, &sub.rpm_sensor, update, 10, 200, 66), #endif SCHED_TASK(terrain_update, 10, 100, 72), #if AP_STATS_ENABLED SCHED_TASK(stats_update, 1, 200, 76), #endif #ifdef USERHOOK_FASTLOOP SCHED_TASK(userhook_FastLoop, 100, 75, 78), #endif #ifdef USERHOOK_50HZLOOP SCHED_TASK(userhook_50Hz, 50, 75, 81), #endif #ifdef USERHOOK_MEDIUMLOOP SCHED_TASK(userhook_MediumLoop, 10, 75, 84), #endif #ifdef USERHOOK_SLOWLOOP SCHED_TASK(userhook_SlowLoop, 3.3, 75, 87), #endif #ifdef USERHOOK_SUPERSLOWLOOP SCHED_TASK(userhook_SuperSlowLoop, 1, 75, 90), #endif }; void Sub::get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) { tasks = &scheduler_tasks[0]; task_count = ARRAY_SIZE(scheduler_tasks); log_bit = MASK_LOG_PM; } constexpr int8_t Sub::_failsafe_priorities[5]; void Sub::run_rate_controller() { const float last_loop_time_s = AP::scheduler().get_last_loop_time_s(); motors.set_dt(last_loop_time_s); attitude_control.set_dt(last_loop_time_s); pos_control.set_dt(last_loop_time_s); //don't run rate controller in manual or motordetection modes if (control_mode != Mode::Number::MANUAL && control_mode != Mode::Number::MOTOR_DETECT) { // run low level rate controllers that only require IMU data and set loop time attitude_control.rate_controller_run(); } } // 50 Hz tasks void Sub::fifty_hz_loop() { // check pilot input failsafe failsafe_pilot_input_check(); failsafe_crash_check(); failsafe_ekf_check(); failsafe_sensors_check(); rc().read_input(); } // update_batt_compass - read battery and compass // should be called at 10hz void Sub::update_batt_compass() { // read battery before compass because it may be used for motor interference compensation battery.read(); if (AP::compass().available()) { // update compass with throttle value - used for compassmot compass.set_throttle(motors.get_throttle()); compass.read(); } } #if HAL_LOGGING_ENABLED // ten_hz_logging_loop // should be run at 10hz void Sub::ten_hz_logging_loop() { // log attitude data if we're not already logging at the higher rate if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); ahrs_view.Write_Rate(motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } if (should_log(MASK_LOG_MOTBATT)) { motors.Log_Write(); } if (should_log(MASK_LOG_RCIN)) { logger.Write_RCIN(); } if (should_log(MASK_LOG_RCOUT)) { logger.Write_RCOUT(); } if (should_log(MASK_LOG_NTUN) && (sub.flightmode->requires_GPS() || !sub.flightmode->has_manual_throttle())) { pos_control.write_log(); } if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) { AP::ins().Write_Vibration(); } if (should_log(MASK_LOG_CTUN)) { attitude_control.control_monitor_log(); } #if HAL_MOUNT_ENABLED if (should_log(MASK_LOG_CAMERA)) { camera_mount.write_log(); } #endif } // twentyfive_hz_logging_loop // should be run at 25hz void Sub::twentyfive_hz_logging() { if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); ahrs_view.Write_Rate(motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } // log IMU data if we're not already logging at the higher rate if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) { AP::ins().Write_IMU(); } } #endif // HAL_LOGGING_ENABLED // three_hz_loop - 3.3hz loop void Sub::three_hz_loop() { leak_detector.update(); failsafe_leak_check(); failsafe_internal_pressure_check(); failsafe_internal_temperature_check(); // check if we've lost contact with the ground station failsafe_gcs_check(); // check if we've lost terrain data failsafe_terrain_check(); #if AP_FENCE_ENABLED // check if we have breached a fence fence_check(); #endif // AP_FENCE_ENABLED #if AP_SERVORELAYEVENTS_ENABLED ServoRelayEvents.update_events(); #endif } // one_hz_loop - runs at 1Hz void Sub::one_hz_loop() { // sync MAVLink system ID mavlink_system.sysid = g.sysid_this_mav; bool arm_check = arming.pre_arm_checks(false); ap.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_gps_check = position_ok(); AP_Notify::flags.flying = motors.armed(); #if HAL_LOGGING_ENABLED if (should_log(MASK_LOG_ANY)) { Log_Write_Data(LogDataID::AP_STATE, ap.value); } #endif if (!motors.armed()) { motors.update_throttle_range(); } // update assigned functions and enable auxiliary servos SRV_Channels::enable_aux_servos(); #if HAL_LOGGING_ENABLED // log terrain data terrain_logging(); #endif // need to set "likely flying" when armed to allow for compass // learning to run set_likely_flying(hal.util->get_soft_armed()); attitude_control.set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz()); pos_control.get_accel_z_pid().set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz()); } void Sub::read_AHRS() { // Perform IMU calculations and get attitude info //----------------------------------------------- // tells AHRS to skip INS update as we have already done it in fast_loop() ahrs.update(true); ahrs_view.update(); } // read baro and rangefinder altitude at 10hz void Sub::update_altitude() { // read in baro altitude read_barometer(); #if HAL_LOGGING_ENABLED if (should_log(MASK_LOG_CTUN)) { Log_Write_Control_Tuning(); #if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED AP::ins().write_notch_log_messages(); #endif #if HAL_GYROFFT_ENABLED gyro_fft.write_log_messages(); #endif } #endif // HAL_LOGGING_ENABLED } bool Sub::control_check_barometer() { #if CONFIG_HAL_BOARD != HAL_BOARD_SITL if (!ap.depth_sensor_present) { // can't hold depth without a depth sensor gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor is not connected."); return false; } else if (failsafe.sensor_health) { gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor error."); return false; } #endif return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_distance_m(float &distance) const { // see GCS_MAVLINK_Sub::send_nav_controller_output() distance = sub.wp_nav.get_wp_distance_to_destination() * 0.01; return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_bearing_deg(float &bearing) const { // see GCS_MAVLINK_Sub::send_nav_controller_output() bearing = sub.wp_nav.get_wp_bearing_to_destination() * 0.01; return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_crosstrack_error_m(float &xtrack_error) const { // no crosstrack error reported, see GCS_MAVLINK_Sub::send_nav_controller_output() xtrack_error = 0; return true; } #if AP_STATS_ENABLED /* update AP_Stats */ void Sub::stats_update(void) { AP::stats()->set_flying(motors.armed()); } #endif // get the altitude relative to the home position or the ekf origin float Sub::get_alt_rel() const { if (!ap.depth_sensor_present) { return 0; } // get relative position float posD; if (ahrs.get_relative_position_D_origin(posD)) { if (ahrs.home_is_set()) { // adjust to the home position auto home = ahrs.get_home(); posD -= static_cast(home.alt) * 0.01f; } } else { // fall back to the barometer reading posD = -AP::baro().get_altitude(); } // convert down to up return -posD; } // get the altitude above mean sea level float Sub::get_alt_msl() const { if (!ap.depth_sensor_present) { return 0; } Location origin; if (!ahrs.get_origin(origin)) { return 0; } // get relative position float posD; if (!ahrs.get_relative_position_D_origin(posD)) { // fall back to the barometer reading posD = -AP::baro().get_altitude(); } // add in the ekf origin altitude posD -= static_cast(origin.alt) * 0.01f; // convert down to up return -posD; } AP_HAL_MAIN_CALLBACKS(&sub);