#include #include #include #include #include "AP_InertialSensor_MPU6000.h" extern const AP_HAL::HAL& hal; #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF #define MPU6000_DRDY_PIN BBB_P8_14 #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT #define MPU6000_DRDY_PIN RPI_GPIO_24 #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE #define MPU6000_DRDY_PIN MINNOW_GPIO_I2S_CLK #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP #define MPU6000_EXT_SYNC_ENABLE 1 #endif #endif /* EXT_SYNC allows for frame synchronisation with an external device such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit */ #ifndef MPU6000_EXT_SYNC_ENABLE #define MPU6000_EXT_SYNC_ENABLE 0 #endif // MPU 6000 registers #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 #define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A # define MPUREG_CONFIG_EXT_SYNC_SHIFT 3 # define MPUREG_CONFIG_EXT_SYNC_GX 0x02 # define MPUREG_CONFIG_EXT_SYNC_GY 0x03 # define MPUREG_CONFIG_EXT_SYNC_GZ 0x04 # define MPUREG_CONFIG_EXT_SYNC_AX 0x05 # define MPUREG_CONFIG_EXT_SYNC_AY 0x06 # define MPUREG_CONFIG_EXT_SYNC_AZ 0x07 #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 # define BIT_TEMP_FIFO_EN 0x80 # define BIT_XG_FIFO_EN 0x40 # define BIT_YG_FIFO_EN 0x20 # define BIT_ZG_FIFO_EN 0x10 # define BIT_ACCEL_FIFO_EN 0x08 # define BIT_SLV2_FIFO_EN 0x04 # define BIT_SLV1_FIFO_EN 0x02 # define BIT_SLV0_FIFI_EN0 0x01 #define MPUREG_I2C_MST_CTRL 0x24 # define BIT_I2C_MST_P_NSR 0x10 # define BIT_I2C_MST_CLK_400KHZ 0x0D #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV1_ADDR 0x28 #define MPUREG_I2C_SLV2_ADDR 0x2B #define MPUREG_I2C_SLV3_ADDR 0x2E #define MPUREG_INT_PIN_CFG 0x37 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs # define BIT_LATCH_INT_EN 0x20 // latch data ready pin #define MPUREG_I2C_SLV4_CTRL 0x34 #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 #define MPUREG_I2C_MST_DELAY_CTRL 0x67 # define BIT_I2C_SLV0_DLY_EN 0x01 # define BIT_I2C_SLV1_DLY_EN 0x02 # define BIT_I2C_SLV2_DLY_EN 0x04 # define BIT_I2C_SLV3_DLY_EN 0x08 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 // ICM2608 specific registers #define ICMREG_ACCEL_CONFIG2 0x1D #define ICM_ACC_DLPF_CFG_1046HZ_NOLPF 0x00 #define ICM_ACC_DLPF_CFG_218HZ 0x01 #define ICM_ACC_DLPF_CFG_99HZ 0x02 #define ICM_ACC_DLPF_CFG_44HZ 0x03 #define ICM_ACC_DLPF_CFG_21HZ 0x04 #define ICM_ACC_DLPF_CFG_10HZ 0x05 #define ICM_ACC_DLPF_CFG_5HZ 0x06 #define ICM_ACC_DLPF_CFG_420HZ 0x07 #define ICM_ACC_FCHOICE_B 0x08 /* this is an undocumented register which if set incorrectly results in getting a 2.7m/s/s offset on the Y axis of the accelerometer */ #define MPUREG_ICM_UNDOC1 0x11 #define MPUREG_ICM_UNDOC1_VALUE 0xc9 // WHOAMI values #define MPU_WHOAMI_6000 0x68 #define ICM_WHOAMI_20608 0xaf #define BIT_READ_FLAG 0x80 #define BIT_I2C_SLVX_EN 0x80 // Configuration bits MPU 3000 and MPU 6000 (not revised)? #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 // Product ID Description for MPU6000 // high 4 bits low 4 bits // Product Name Product Revision #define MPU6000ES_REV_C4 0x14 // 0001 0100 #define MPU6000ES_REV_C5 0x15 // 0001 0101 #define MPU6000ES_REV_D6 0x16 // 0001 0110 #define MPU6000ES_REV_D7 0x17 // 0001 0111 #define MPU6000ES_REV_D8 0x18 // 0001 1000 #define MPU6000_REV_C4 0x54 // 0101 0100 #define MPU6000_REV_C5 0x55 // 0101 0101 #define MPU6000_REV_D6 0x56 // 0101 0110 #define MPU6000_REV_D7 0x57 // 0101 0111 #define MPU6000_REV_D8 0x58 // 0101 1000 #define MPU6000_REV_D9 0x59 // 0101 1001 #define MPU6000_SAMPLE_SIZE 14 #define MPU6000_MAX_FIFO_SAMPLES 8 #define MAX_DATA_READ (MPU6000_MAX_FIFO_SAMPLES * MPU6000_SAMPLE_SIZE) #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) #define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]) /* * RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ static const float GYRO_SCALE = (0.0174532f / 16.4f); /* * RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPU6k * variants however */ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) : AP_InertialSensor_Backend(imu) , _temp_filter(1000, 1) , _dev(std::move(dev)) , _rotation(rotation) { } AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000() { if (_fifo_buffer != nullptr) { delete[] _fifo_buffer; } delete _auxiliary_bus; } AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) { if (!dev) { return nullptr; } AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } sensor->_id = HAL_INS_MPU60XX_I2C; return sensor; } AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev, enum Rotation rotation) { if (!dev) { return nullptr; } AP_InertialSensor_MPU6000 *sensor; dev->set_read_flag(0x80); sensor = new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } sensor->_id = HAL_INS_MPU60XX_SPI; return sensor; } bool AP_InertialSensor_MPU6000::_init() { #ifdef MPU6000_DRDY_PIN _drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN); _drdy_pin->mode(HAL_GPIO_INPUT); #endif bool success = _hardware_init(); #if MPU6000_DEBUG _dump_registers(); #endif return success; } void AP_InertialSensor_MPU6000::_fifo_reset() { uint8_t user_ctrl = _master_i2c_enable?BIT_USER_CTRL_I2C_MST_EN:0; _register_write(MPUREG_USER_CTRL, user_ctrl); _register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_RESET); _register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_EN); } void AP_InertialSensor_MPU6000::_fifo_enable() { _register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN | BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN, true); _fifo_reset(); hal.scheduler->delay(1); } bool AP_InertialSensor_MPU6000::_has_auxiliary_bus() { return _dev->bus_type() != AP_HAL::Device::BUS_TYPE_I2C; } void AP_InertialSensor_MPU6000::start() { if (!_dev->get_semaphore()->take(100)) { AP_HAL::panic("MPU6000: Unable to get semaphore"); } // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); // only used for wake-up in accelerometer only low power mode _register_write(MPUREG_PWR_MGMT_2, 0x00); hal.scheduler->delay(1); // always use FIFO _fifo_enable(); // setup ODR and on-sensor filtering _set_filter_register(); // set sample rate to 1000Hz and apply a software filter // In this configuration, the gyro sample rate is 8kHz _register_write(MPUREG_SMPLRT_DIV, 0, true); hal.scheduler->delay(1); // Gyro scale 2000ยบ/s _register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true); hal.scheduler->delay(1); // read the product ID rev c has 1/2 the sensitivity of rev d uint8_t product_id = _register_read(MPUREG_PRODUCT_ID); //Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id); if (!_is_icm_device && ((product_id == MPU6000ES_REV_C4) || (product_id == MPU6000ES_REV_C5) || (product_id == MPU6000_REV_C4) || (product_id == MPU6000_REV_C5))) { // Accel scale 8g (4096 LSB/g) // Rev C has different scaling than rev D _register_write(MPUREG_ACCEL_CONFIG,1<<3, true); _accel_scale = GRAVITY_MSS / 4096.f; } else { // Accel scale 16g (2048 LSB/g) _register_write(MPUREG_ACCEL_CONFIG,3<<3, true); _accel_scale = GRAVITY_MSS / 2048.f; } hal.scheduler->delay(1); if (_is_icm_device) { // this avoids a sensor bug, see description above _register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); } // configure interrupt to fire when new data arrives _register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); hal.scheduler->delay(1); // clear interrupt on any read, and hold the data ready pin high // until we clear the interrupt _register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); // now that we have initialised, we set the bus speed to high _dev->set_speed(AP_HAL::Device::SPEED_HIGH); _dev->get_semaphore()->give(); // grab the used instances _gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(DEVTYPE_GYR_MPU6000)); _accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(DEVTYPE_ACC_MPU6000)); // setup sensor rotations from probe() set_gyro_orientation(_gyro_instance, _rotation); set_accel_orientation(_accel_instance, _rotation); // allocate fifo buffer _fifo_buffer = new uint8_t[MAX_DATA_READ]; if (_fifo_buffer == nullptr) { AP_HAL::panic("MPU6000: Unable to allocate FIFO buffer"); } // start the timer process to read samples _dev->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, bool)); } /* process any */ bool AP_InertialSensor_MPU6000::update() { update_accel(_accel_instance); update_gyro(_gyro_instance); _publish_temperature(_accel_instance, _temp_filtered); return true; } AuxiliaryBus *AP_InertialSensor_MPU6000::get_auxiliary_bus() { if (_auxiliary_bus) { return _auxiliary_bus; } if (_has_auxiliary_bus()) { _auxiliary_bus = new AP_MPU6000_AuxiliaryBus(*this, _dev->get_bus_id()); } return _auxiliary_bus; } /* * Return true if the MPU6000 has new data available for reading. * * We use the data ready pin if it is available. Otherwise, read the * status register. */ bool AP_InertialSensor_MPU6000::_data_ready() { if (_drdy_pin) { return _drdy_pin->read() != 0; } uint8_t status = _register_read(MPUREG_INT_STATUS); return (status & BIT_RAW_RDY_INT) != 0; } /* * Timer process to poll for new data from the MPU6000. Called from bus thread with semaphore held */ bool AP_InertialSensor_MPU6000::_poll_data() { _read_fifo(); return true; } void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples) { for (uint8_t i = 0; i < n_samples; i++) { uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i; Vector3f accel, gyro; bool fsync_set = false; #if MPU6000_EXT_SYNC_ENABLE fsync_set = (int16_val(data, 2) & 1U) != 0; #endif accel = Vector3f(int16_val(data, 1), int16_val(data, 0), -int16_val(data, 2)); accel *= _accel_scale; float temp = int16_val(data, 3); temp = temp/340 + 36.53; _last_temp = temp; gyro = Vector3f(int16_val(data, 5), int16_val(data, 4), -int16_val(data, 6)); gyro *= GYRO_SCALE; _rotate_and_correct_accel(_accel_instance, accel); _rotate_and_correct_gyro(_gyro_instance, gyro); _notify_new_accel_raw_sample(_accel_instance, accel, AP_HAL::micros64(), fsync_set); _notify_new_gyro_raw_sample(_gyro_instance, gyro); _temp_filtered = _temp_filter.apply(temp); } } void AP_InertialSensor_MPU6000::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples) { float tsum = 0; const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale; bool clipped = false; for (uint8_t i = 0; i < n_samples; i++) { uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i; Vector3l a(int16_val(data, 1), int16_val(data, 0), -int16_val(data, 2)); if (abs(a.x) > clip_limit || abs(a.y) > clip_limit || abs(a.z) > clip_limit) { clipped = true; } Vector3l g(int16_val(data, 5), int16_val(data, 4), -int16_val(data, 6)); _accum.accel += a; _accum.gyro += g; _accum.count++; float temp = int16_val(data, 3); temp = temp/340 + 36.53; tsum += temp; _last_temp = temp; } if (clipped) { increment_clip_count(_accel_instance); } _temp_filtered = _temp_filter.apply(tsum / n_samples); if (_accum.count == MPU6000_MAX_FIFO_SAMPLES) { float ascale = _accel_scale / _accum.count; Vector3f accel(_accum.accel.x*ascale, _accum.accel.y*ascale, _accum.accel.z*ascale); float gscale = GYRO_SCALE / _accum.count; Vector3f gyro(_accum.gyro.x*gscale, _accum.gyro.y*gscale, _accum.gyro.z*gscale); _rotate_and_correct_accel(_accel_instance, accel); _rotate_and_correct_gyro(_gyro_instance, gyro); _notify_new_accel_raw_sample(_accel_instance, accel, AP_HAL::micros64(), false); _notify_new_gyro_raw_sample(_gyro_instance, gyro); _accum.accel.zero(); _accum.gyro.zero(); _accum.count = 0; } } /* * check the FIFO integrity by cross-checking the temperature against * the last FIFO reading */ void AP_InertialSensor_MPU6000::_check_temperature(void) { uint8_t rx[2]; if (!_block_read(MPUREG_TEMP_OUT_H, rx, 2)) { return; } float temp = int16_val(rx, 0) / 340 + 36.53; if (fabsf(_last_temp - temp) > 2 && !is_zero(_last_temp)) { // a 2 degree change in one sample is a highly likely // sign of a FIFO alignment error printf("FIFO temperature reset: %.2f %.2f\n", (double)temp, (double)_last_temp); _last_temp = temp; _fifo_reset(); } } void AP_InertialSensor_MPU6000::_read_fifo() { uint8_t n_samples; uint16_t bytes_read; uint8_t *rx = _fifo_buffer; if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) { hal.console->printf("MPU60x0: error in fifo read\n"); goto check_registers; } bytes_read = uint16_val(rx, 0); n_samples = bytes_read / MPU6000_SAMPLE_SIZE; if (n_samples == 0) { /* Not enough data in FIFO */ goto check_registers; } while (n_samples > 0) { uint8_t n = MIN(n_samples, MPU6000_MAX_FIFO_SAMPLES - _accum.count); if (!_block_read(MPUREG_FIFO_R_W, rx, n * MPU6000_SAMPLE_SIZE)) { printf("MPU60x0: error in fifo read %u bytes\n", n * MPU6000_SAMPLE_SIZE); goto check_registers; } if (_fast_sampling) { _accumulate_fast_sampling(rx, n); } else { _accumulate(rx, n); } n_samples -= n; } if (_temp_counter++ == 255) { // check FIFO integrity every 0.25s _check_temperature(); } check_registers: if (_reg_check_counter++ == 10) { _reg_check_counter = 0; // check next register value for correctness if (!_dev->check_next_register()) { _inc_gyro_error_count(_gyro_instance); _inc_accel_error_count(_accel_instance); } } } bool AP_InertialSensor_MPU6000::_block_read(uint8_t reg, uint8_t *buf, uint32_t size) { return _dev->read_registers(reg, buf, size); } uint8_t AP_InertialSensor_MPU6000::_register_read(uint8_t reg) { uint8_t val = 0; _dev->read_registers(reg, &val, 1); return val; } void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val, bool checked) { _dev->write_register(reg, val, checked); } /* set the DLPF filter frequency. Assumes caller has taken semaphore */ void AP_InertialSensor_MPU6000::_set_filter_register(void) { uint8_t config; #if MPU6000_EXT_SYNC_ENABLE // add in EXT_SYNC bit if enabled config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT); #else config = 0; #endif if (enable_fast_sampling(_accel_instance)) { _fast_sampling = (_is_icm_device && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI); } if (_fast_sampling) { // this gives us 8kHz sampling on gyros and 4kHz on accels config |= BITS_DLPF_CFG_256HZ_NOLPF2; } else { // limit to 1kHz if not on SPI config |= BITS_DLPF_CFG_188HZ; } _register_write(MPUREG_CONFIG, config, true); if (_is_icm_device) { if (_fast_sampling) { // setup for 4kHz accels _register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true); } else { _register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ, true); } } } /* check whoami for MPU6000 or ICM-20608 */ bool AP_InertialSensor_MPU6000::_check_whoami(void) { uint8_t whoami = _register_read(MPUREG_WHOAMI); switch (whoami) { case MPU_WHOAMI_6000: _is_icm_device = false; return true; case ICM_WHOAMI_20608: _is_icm_device = true; return true; } // not a value WHOAMI result return false; } bool AP_InertialSensor_MPU6000::_hardware_init(void) { if (!_dev->get_semaphore()->take(100)) { AP_HAL::panic("MPU6000: Unable to get semaphore"); } // setup for register checking _dev->setup_checked_registers(7); // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); if (!_check_whoami()) { _dev->get_semaphore()->give(); return false; } // Chip reset uint8_t tries; for (tries = 0; tries < 5; tries++) { uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL); /* First disable the master I2C to avoid hanging the slaves on the * aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus * is used */ if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { _register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN); hal.scheduler->delay(10); } /* reset device */ _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); /* bus-dependent initialization */ if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { /* Disable I2C bus if SPI selected (Recommended in Datasheet to be * done just after the device is reset) */ _register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); } // Wake up device and select GyroZ clock. Note that the // MPU6000 starts up in sleep mode, and it can take some time // for it to come out of sleep _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(5); // check it has woken up if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { break; } hal.scheduler->delay(10); if (_data_ready()) { break; } #if MPU6000_DEBUG _dump_registers(); #endif } _dev->set_speed(AP_HAL::Device::SPEED_HIGH); _dev->get_semaphore()->give(); if (tries == 5) { hal.console->println("Failed to boot MPU6000 5 times"); return false; } if (_is_icm_device) { // this avoids a sensor bug, see description above _register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); } return true; } #if MPU6000_DEBUG // dump all config registers - used for debug void AP_InertialSensor_MPU6000::_dump_registers(void) { hal.console->println("MPU6000 registers"); if (!_dev->get_semaphore()->take(100)) { return; } for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) { uint8_t v = _register_read(reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); _dev->get_semaphore()->give(); } #endif AP_MPU6000_AuxiliaryBusSlave::AP_MPU6000_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr, uint8_t instance) : AuxiliaryBusSlave(bus, addr, instance) , _mpu6000_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3) , _mpu6000_reg(_mpu6000_addr + 1) , _mpu6000_ctrl(_mpu6000_addr + 2) , _mpu6000_do(MPUREG_I2C_SLV0_DO + _instance) { } int AP_MPU6000_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size, uint8_t *out) { auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); uint8_t addr; /* Ensure the slave read/write is disabled before changing the registers */ backend._register_write(_mpu6000_ctrl, 0); if (out) { backend._register_write(_mpu6000_do, *out); addr = _addr; } else { addr = _addr | BIT_READ_FLAG; } backend._register_write(_mpu6000_addr, addr); backend._register_write(_mpu6000_reg, reg); backend._register_write(_mpu6000_ctrl, BIT_I2C_SLVX_EN | size); return 0; } int AP_MPU6000_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf, uint8_t size) { assert(buf); if (_registered) { hal.console->println("Error: can't passthrough when slave is already configured"); return -1; } int r = _set_passthrough(reg, size); if (r < 0) { return r; } /* wait the value to be read from the slave and read it back */ hal.scheduler->delay(10); auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size)) { return -1; } /* disable new reads */ backend._register_write(_mpu6000_ctrl, 0); return size; } int AP_MPU6000_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val) { if (_registered) { hal.console->println("Error: can't passthrough when slave is already configured"); return -1; } int r = _set_passthrough(reg, 1, &val); if (r < 0) { return r; } /* wait the value to be written to the slave */ hal.scheduler->delay(10); auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); /* disable new writes */ backend._register_write(_mpu6000_ctrl, 0); return 1; } int AP_MPU6000_AuxiliaryBusSlave::read(uint8_t *buf) { if (!_registered) { hal.console->println("Error: can't read before configuring slave"); return -1; } auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) { return -1; } return _sample_size; } /* MPU6000 provides up to 5 slave devices, but the 5th is way too different to * configure and is seldom used */ AP_MPU6000_AuxiliaryBus::AP_MPU6000_AuxiliaryBus(AP_InertialSensor_MPU6000 &backend, uint32_t devid) : AuxiliaryBus(backend, 4, devid) { } AP_HAL::Semaphore *AP_MPU6000_AuxiliaryBus::get_semaphore() { return static_cast(_ins_backend)._dev->get_semaphore(); } AuxiliaryBusSlave *AP_MPU6000_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance) { /* Enable slaves on MPU6000 if this is the first time */ if (_ext_sens_data == 0) { _configure_slaves(); } return new AP_MPU6000_AuxiliaryBusSlave(*this, addr, instance); } void AP_MPU6000_AuxiliaryBus::_configure_slaves() { auto &backend = AP_InertialSensor_MPU6000::from(_ins_backend); /* Enable the I2C master to slaves on the auxiliary I2C bus*/ uint8_t user_ctrl = backend._register_read(MPUREG_USER_CTRL); backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN); backend._master_i2c_enable = true; /* stop condition between reads; clock at 400kHz */ backend._register_write(MPUREG_I2C_MST_CTRL, BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ); /* Hard-code divider for internal sample rate, 1 kHz, resulting in a * sample rate of 100Hz */ backend._register_write(MPUREG_I2C_SLV4_CTRL, 9); /* All slaves are subject to the sample rate */ backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN | BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN); } int AP_MPU6000_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave, uint8_t reg, uint8_t size) { if (_ext_sens_data + size > MAX_EXT_SENS_DATA) { return -1; } AP_MPU6000_AuxiliaryBusSlave *mpu_slave = static_cast(slave); mpu_slave->_set_passthrough(reg, size); mpu_slave->_ext_sens_data = _ext_sens_data; _ext_sens_data += size; return 0; }