/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
ADSB simulator class for MAVLink ADSB peripheral
*/
#include "SIM_ADSB.h"
#if HAL_SIM_ADSB_ENABLED
#include "SITL.h"
#include
#include "SIM_Aircraft.h"
#include
namespace SITL {
/*
update a simulated vehicle
*/
void ADSB_Vehicle::update(float delta_t)
{
if (!initialised) {
const SIM *_sitl = AP::sitl();
if (_sitl == nullptr) {
return;
}
initialised = true;
ICAO_address = (uint32_t)(rand() % 10000);
snprintf(callsign, sizeof(callsign), "SIM%u", ICAO_address);
position.x = Aircraft::rand_normal(0, _sitl->adsb_radius_m);
position.y = Aircraft::rand_normal(0, _sitl->adsb_radius_m);
position.z = -fabsf(_sitl->adsb_altitude_m);
double vel_min = 5, vel_max = 20;
if (position.length() > 500) {
vel_min *= 3;
vel_max *= 3;
} else if (position.length() > 10000) {
vel_min *= 10;
vel_max *= 10;
}
type = (ADSB_EMITTER_TYPE)(rand() % (ADSB_EMITTER_TYPE_POINT_OBSTACLE + 1));
// don't allow surface emitters to move
if (type == ADSB_EMITTER_TYPE_POINT_OBSTACLE) {
stationary_object_created_ms = AP_HAL::millis64();
velocity_ef.zero();
} else {
stationary_object_created_ms = 0;
velocity_ef.x = Aircraft::rand_normal(vel_min, vel_max);
velocity_ef.y = Aircraft::rand_normal(vel_min, vel_max);
if (type < ADSB_EMITTER_TYPE_EMERGENCY_SURFACE) {
velocity_ef.z = Aircraft::rand_normal(-3, 3);
}
}
} else if (stationary_object_created_ms > 0 && AP_HAL::millis64() - stationary_object_created_ms > AP_MSEC_PER_HOUR) {
// regenerate stationary objects so we don't randomly fill up the screen with them over time
initialised = false;
}
position += velocity_ef * delta_t;
if (position.z > 0) {
// it has crashed! reset
initialised = false;
}
}
/*
update the ADSB peripheral state
*/
void ADSB::update(const class Aircraft &aircraft)
{
if (_sitl == nullptr) {
_sitl = AP::sitl();
return;
} else if (_sitl->adsb_plane_count <= 0) {
return;
} else if (_sitl->adsb_plane_count >= num_vehicles_MAX) {
_sitl->adsb_plane_count.set_and_save(0);
num_vehicles = 0;
return;
} else if (num_vehicles != _sitl->adsb_plane_count) {
num_vehicles = _sitl->adsb_plane_count;
for (uint8_t i=0; i 0) {
for (uint8_t i=0; i= 1000) {
mavlink_heartbeat_t heartbeat;
heartbeat.type = MAV_TYPE_ADSB;
heartbeat.autopilot = MAV_AUTOPILOT_ARDUPILOTMEGA;
heartbeat.base_mode = 0;
heartbeat.system_status = 0;
heartbeat.mavlink_version = 0;
heartbeat.custom_mode = 0;
/*
save and restore sequence number for chan0, as it is used by
generated encode functions
*/
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
uint8_t saved_seq = chan0_status->current_tx_seq;
chan0_status->current_tx_seq = mavlink.seq;
len = mavlink_msg_heartbeat_encode(vehicle_system_id,
vehicle_component_id,
&msg, &heartbeat);
chan0_status->current_tx_seq = saved_seq;
write_to_autopilot((char*)&msg.magic, len);
last_heartbeat_ms = now;
}
/*
send a ADSB_VEHICLE messages
*/
const Location &home = aircraft.get_home();
uint32_t now_us = AP_HAL::micros();
if (now_us - last_report_us >= reporting_period_ms*1000UL) {
for (uint8_t i=0; i _sitl->adsb_radius_m) {
vehicle.initialised = false;
}
mavlink_adsb_vehicle_t adsb_vehicle {};
last_report_us = now_us;
adsb_vehicle.ICAO_address = vehicle.ICAO_address;
adsb_vehicle.lat = loc.lat;
adsb_vehicle.lon = loc.lng;
adsb_vehicle.altitude_type = ADSB_ALTITUDE_TYPE_PRESSURE_QNH;
adsb_vehicle.altitude = -vehicle.position.z * 1000;
adsb_vehicle.heading = wrap_360_cd(100*degrees(atan2f(vehicle.velocity_ef.y, vehicle.velocity_ef.x)));
adsb_vehicle.hor_velocity = norm(vehicle.velocity_ef.x, vehicle.velocity_ef.y) * 100;
adsb_vehicle.ver_velocity = -vehicle.velocity_ef.z * 100;
memcpy(adsb_vehicle.callsign, vehicle.callsign, sizeof(adsb_vehicle.callsign));
adsb_vehicle.emitter_type = vehicle.type;
adsb_vehicle.tslc = 1;
adsb_vehicle.flags =
ADSB_FLAGS_VALID_COORDS |
ADSB_FLAGS_VALID_ALTITUDE |
ADSB_FLAGS_VALID_HEADING |
ADSB_FLAGS_VALID_VELOCITY |
ADSB_FLAGS_VALID_CALLSIGN |
ADSB_FLAGS_VALID_SQUAWK |
ADSB_FLAGS_SIMULATED |
ADSB_FLAGS_VERTICAL_VELOCITY_VALID |
ADSB_FLAGS_BARO_VALID;
// all flags set except ADSB_FLAGS_SOURCE_UAT
adsb_vehicle.squawk = 1200;
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
uint8_t saved_seq = chan0_status->current_tx_seq;
chan0_status->current_tx_seq = mavlink.seq;
len = mavlink_msg_adsb_vehicle_encode(vehicle_system_id,
MAV_COMP_ID_ADSB,
&msg, &adsb_vehicle);
chan0_status->current_tx_seq = saved_seq;
uint8_t msgbuf[len];
len = mavlink_msg_to_send_buffer(msgbuf, &msg);
if (len > 0) {
write_to_autopilot((char*)msgbuf, len);
}
}
}
// ADSB_transceiever is enabled, send the status report.
if (_sitl->adsb_tx && now - last_tx_report_ms > 1000) {
last_tx_report_ms = now;
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
uint8_t saved_seq = chan0_status->current_tx_seq;
uint8_t saved_flags = chan0_status->flags;
chan0_status->flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
chan0_status->current_tx_seq = mavlink.seq;
const mavlink_uavionix_adsb_transceiver_health_report_t health_report = {UAVIONIX_ADSB_RF_HEALTH_OK};
len = mavlink_msg_uavionix_adsb_transceiver_health_report_encode(vehicle_system_id,
MAV_COMP_ID_ADSB,
&msg, &health_report);
chan0_status->current_tx_seq = saved_seq;
chan0_status->flags = saved_flags;
uint8_t msgbuf[len];
len = mavlink_msg_to_send_buffer(msgbuf, &msg);
if (len > 0) {
write_to_autopilot((char*)msgbuf, len);
::printf("ADSBsim send tx health packet\n");
}
}
}
} // namespace SITL
#endif // HAL_SIM_ADSB_ENABLED