// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS) // use this to prevent recursion during sensor init static bool in_mavlink_delay; // true when we have received at least 1 MAVLink packet static bool mavlink_active; // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ static NOINLINE void send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = MAV_STATE_ACTIVE; uint32_t custom_mode = control_mode; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (control_mode) { case MANUAL: base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case AUTO: base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: system_status = MAV_STATE_CALIBRATING; break; } mavlink_msg_heartbeat_send( chan, MAV_TYPE_ANTENNA_TRACKER, MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } static NOINLINE void send_attitude(mavlink_channel_t chan) { Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, hal.scheduler->millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } static void NOINLINE send_location(mavlink_channel_t chan) { uint32_t fix_time; if (g_gps->status() >= GPS::GPS_OK_FIX_2D) { fix_time = g_gps->last_fix_time; } else { fix_time = hal.scheduler->millis(); } mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees current_loc.alt * 10, // millimeters above sea level 0, g_gps->velocity_north() * 100, // X speed cm/s (+ve North) g_gps->velocity_east() * 100, // Y speed cm/s (+ve East) g_gps->velocity_down() * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); } static void NOINLINE send_gps_raw(mavlink_channel_t chan) { static uint32_t last_send_time; if (last_send_time != 0 && last_send_time == g_gps->last_fix_time && g_gps->status() >= GPS::GPS_OK_FIX_3D) { return; } last_send_time = g_gps->last_fix_time; mavlink_msg_gps_raw_int_send( chan, g_gps->last_fix_time*(uint64_t)1000, g_gps->status(), g_gps->latitude, // in 1E7 degrees g_gps->longitude, // in 1E7 degrees g_gps->altitude_cm * 10, // in mm g_gps->hdop, 65535, g_gps->ground_speed_cm, // cm/s g_gps->ground_course_cd, // 1/100 degrees, g_gps->num_sats); } static void NOINLINE send_radio_out(mavlink_channel_t chan) { mavlink_msg_servo_output_raw_send( chan, hal.scheduler->micros(), 0, // port hal.rcout->read(0), hal.rcout->read(1), hal.rcout->read(2), hal.rcout->read(3), hal.rcout->read(4), hal.rcout->read(5), hal.rcout->read(6), hal.rcout->read(7)); } static void NOINLINE send_raw_imu1(mavlink_channel_t chan) { const Vector3f &accel = ins.get_accel(); const Vector3f &gyro = ins.get_gyro(); const Vector3f &mag = compass.get_field(); mavlink_msg_raw_imu_send( chan, hal.scheduler->micros(), accel.x * 1000.0 / GRAVITY_MSS, accel.y * 1000.0 / GRAVITY_MSS, accel.z * 1000.0 / GRAVITY_MSS, gyro.x * 1000.0, gyro.y * 1000.0, gyro.z * 1000.0, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 1 && ins.get_accel_count() <= 1 && compass.get_count() <= 1) { return; } const Vector3f &accel2 = ins.get_accel(1); const Vector3f &gyro2 = ins.get_gyro(1); const Vector3f &mag2 = compass.get_field(1); mavlink_msg_scaled_imu2_send( chan, hal.scheduler->millis(), accel2.x * 1000.0f / GRAVITY_MSS, accel2.y * 1000.0f / GRAVITY_MSS, accel2.z * 1000.0f / GRAVITY_MSS, gyro2.x * 1000.0f, gyro2.y * 1000.0f, gyro2.z * 1000.0f, mag2.x, mag2.y, mag2.z); } static void NOINLINE send_raw_imu2(mavlink_channel_t chan) { float pressure = barometer.get_pressure(); mavlink_msg_scaled_pressure_send( chan, hal.scheduler->millis(), pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure())*0.01f, // hectopascal barometer.get_temperature()*100); // 0.01 degrees C } static void NOINLINE send_raw_imu3(mavlink_channel_t chan) { // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; Vector3f mag_offsets = compass.get_offsets(); Vector3f accel_offsets = ins.get_accel_offsets(); Vector3f gyro_offsets = ins.get_gyro_offsets(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } static void NOINLINE send_ahrs(mavlink_channel_t chan) { Vector3f omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } static void NOINLINE send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, 0, hal.i2c->lockup_count()); } static void NOINLINE send_waypoint_request(mavlink_channel_t chan) { gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); } static void NOINLINE send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } static void NOINLINE send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, 0, nav_status.pitch, nav_status.bearing, nav_status.bearing, nav_status.distance, nav_status.altitude_difference, 0, 0); } // report simulator state static void NOINLINE send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL sitl.simstate_send(chan); #endif } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK::try_send_message(enum ap_message id) { int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; switch (id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); send_heartbeat(chan); return true; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(chan); break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); send_gps_raw(chan); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_radio_out(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu1(chan); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_raw_imu2(chan); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_raw_imu3(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); send_waypoint_request(chan); break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); send_statustext(chan); break; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(chan); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(chan); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(chan); break; case MSG_SERVO_OUT: case MSG_EXTENDED_STATUS1: case MSG_EXTENDED_STATUS2: case MSG_RETRY_DEFERRED: case MSG_CURRENT_WAYPOINT: case MSG_VFR_HUD: case MSG_RADIO_IN: case MSG_SYSTEM_TIME: case MSG_LIMITS_STATUS: case MSG_FENCE_STATUS: case MSG_WIND: case MSG_RANGEFINDER: break; // just here to prevent a warning } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; void GCS_MAVLINK::update(void) { // receive new packets mavlink_message_t msg; mavlink_status_t status; status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; i= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate during parameter sends if (_queued_parameter != NULL) { rate *= 0.25; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } } if (in_mavlink_delay) { // don't send any other stream types while in the delay callback return; } if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); } if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_GPS_RAW); } if (stream_trigger(STREAM_POSITION)) { send_message(MSG_LOCATION); } if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); } if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); } if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_SIMSTATE); } } void GCS_MAVLINK::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { handle_request_data_stream(msg, true); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: { handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: { handle_param_request_read(msg); break; } case MAVLINK_MSG_ID_PARAM_SET: { handle_param_set(msg, NULL); break; } case MAVLINK_MSG_ID_HEARTBEAT: { if (msg->sysid != g.sysid_my_gcs) break; break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; uint8_t result = MAV_RESULT_UNSUPPORTED; // do command send_text_P(SEVERITY_LOW,PSTR("command received: ")); switch(packet.command) { case MAV_CMD_PREFLIGHT_CALIBRATION: { if (packet.param1 == 1 || packet.param2 == 1) { calibrate_ins(); } else if (packet.param3 == 1) { init_barometer(); } if (packet.param4 == 1) { // Cant trim radio } #if !defined( __AVR_ATmega1280__ ) if (packet.param5 == 1) { float trim_roll, trim_pitch; AP_InertialSensor_UserInteract_MAVLink interact(chan); if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } #endif result = MAV_RESULT_ACCEPTED; break; } case MAV_CMD_COMPONENT_ARM_DISARM: if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) { if (packet.param1 == 1.0f) { arm_servos(); result = MAV_RESULT_ACCEPTED; } else if (packet.param1 == 0.0f) { disarm_servos(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_UNSUPPORTED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_MODE: switch ((uint16_t)packet.param1) { case MAV_MODE_MANUAL_ARMED: case MAV_MODE_MANUAL_DISARMED: set_mode(MANUAL); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_AUTO_ARMED: case MAV_MODE_AUTO_DISARMED: set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; } break; // mavproxy/mavutil sends this when auto command is entered case MAV_CMD_MISSION_START: set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: { if (packet.param1 == 1 || packet.param1 == 3) { // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(packet.param1 == 3); result = MAV_RESULT_ACCEPTED; } break; } default: break; } mavlink_msg_command_ack_send( chan, packet.command, result); break; } // When mavproxy 'wp sethome' case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; if (packet.start_index == 0) { // New home at wp index 0. Ask for it waypoint_receiving = true; waypoint_request_i = 0; waypoint_request_last = 0; send_message(MSG_NEXT_WAYPOINT); waypoint_receiving = true; } break; } // XXX receive a WP from GCS and store in EEPROM if it is HOME case MAVLINK_MSG_ID_MISSION_ITEM: { // decode mavlink_mission_item_t packet; uint8_t result = MAV_MISSION_ACCEPTED; mavlink_msg_mission_item_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; struct Location tell_command = {}; switch (packet.frame) { case MAV_FRAME_MISSION: case MAV_FRAME_GLOBAL: { tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7 tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7 tell_command.alt = packet.z*1.0e2f; // in as m converted to cm tell_command.options = 0; // absolute altitude break; } #ifdef MAV_FRAME_LOCAL_NED case MAV_FRAME_LOCAL_NED: // local (relative to home position) { tell_command.lat = 1.0e7f*ToDeg(packet.x/ (RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat; tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng; tell_command.alt = -packet.z*1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; break; } #endif #ifdef MAV_FRAME_LOCAL case MAV_FRAME_LOCAL: // local (relative to home position) { tell_command.lat = 1.0e7f*ToDeg(packet.x/ (RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat; tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng; tell_command.alt = packet.z*1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; break; } #endif case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude { tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7 tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7 tell_command.alt = packet.z * 1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!! break; } default: result = MAV_MISSION_UNSUPPORTED_FRAME; break; } if (result != MAV_MISSION_ACCEPTED) goto mission_failed; // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) { result = MAV_MISSION_ERROR; goto mission_failed; } // check if this is the HOME wp if (packet.seq == 0) { set_home(tell_command); // New home in EEPROM send_text_P(SEVERITY_LOW,PSTR("new HOME received")); waypoint_receiving = false; } mission_failed: // we are rejecting the mission/waypoint mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, result); break; } case MAVLINK_MSG_ID_GLOBAL_POSITION_INT: { // decode mavlink_global_position_int_t packet; mavlink_msg_global_position_int_decode(msg, &packet); tracking_update_position(packet); break; } case MAVLINK_MSG_ID_SCALED_PRESSURE: { // decode mavlink_scaled_pressure_t packet; mavlink_msg_scaled_pressure_decode(msg, &packet); tracking_update_pressure(packet); break; } default: break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ static void mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised) return; in_mavlink_delay = true; uint32_t tnow = hal.scheduler->millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_message(MSG_HEARTBEAT); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } in_mavlink_delay = false; } /* * send a message on both GCS links */ static void gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); #if LOGGING_ENABLED == ENABLED DataFlash.Log_Write_Message(gcs[0].pending_status.text); #endif gcs[0].send_message(MSG_STATUSTEXT); for (uint8_t i=1; i